Timeline/ Marking Period	Cur. Standards & Benchmarks-Essential Questions or Unit	Learning Targets	Vocabulary	Assessment
August/ September	 A.SSE.1 Interpret expressions that represent a quantity in terms of its context.★ a. Interpret parts of an expression, such as terms, factors, and coefficients. Interpret complicated expressions by viewing one or more of their parts as a single entity. <i>For example, interpret</i> <i>P(1+r)n as the product</i> <i>of P and a factor not</i> <i>depending on P.</i> A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable 	 Write or point to the coefficient of a variable in an expression Write or point to the power of a polynomial expression Tell why an expression is a quadratic expression Explain the meaning of a fractional exponent Determine the root of the rational exponential expression Represent an expression with a rational exponent, given a real-life situation Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Write or describe a real-life situation, given a rational exponential expression Use or describe a properties of addition and multiplication to justify steps in solving equations Given an equation, write a scenario to represent it. 	Expression, terms, factors, coefficient, exponent, rational exponent, distributive property, associative property, commutative property, like terms, combining like terms, factor an expression Addition property of equality, subtraction property of equality, division property of equality, multiplication property of equality, distributive property, additive inverse,	Daily Work Quizzes Test Notebook

	argument to justify a solution method.		multiplicative inverse.	
	A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.	 Solve linear equations of one designated variable, including those with letters as coefficients Utilize the four properties of equality to maintain the balance of an equation Apply the properties of numbers Solve inequalities of one variable and explain the steps Model the solution set of inequalities on a number line Given a story, or real-world situation, I can model it as a linear equation or an inequality Given an equation, or inequality, develop a representative story 	Linear equations, linear inequalities, solve equations and inequalities, coefficients, commutative property, associative property, distributive property, inverse property, identity property	
September & October	F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If <i>f</i> is a function and <i>x</i> is an element of its domain, then $f(x)$ denotes the output of <i>f</i> corresponding to the input <i>x</i> . The graph of <i>f</i> is the graph of the equation $y = f(x)$.	 Determine whether a relation is a function through the use of comparing ordered pairs, by use of a table, by mapping, or by creating a graph Demonstrate how the use of the vertical line test can show whether a particular graph is a function Determine the domain and range of a function given a set of ordered pairs, a table, or a graph 	Function, domain, range, element, function notation, evaluate, sequences, output of the function, input, arithmetic sequence, geometric sequence	Test Quiz Written Work

F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	 Use function notation to represent data represented by a given domain and range Calculate the output value of a function given an input value Determine relevant domain and range for given real-life situation 		
F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. <i>For</i> <i>example, the Fibonacci</i> <i>sequence is defined</i> <i>recursively by f(0) =</i>	 Write a variable expression that represents a given sequence Use a variable expression representation of sequence to write the sequence using function notation Determine if a sequence is arithmetic or geometric 		
f(1) = 1, $f(n+1) = f(n) + f(n-1)$ for $n \ge 1$. F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	 Tell whether the slope of two lines are positive, negative, zero or undefined - given the equations, graphs, tables, or verbal descriptions Tell whether an exponential relationship indicates growth or decay - given the equations, graphs, tables, or verbal descriptions 	standard form of a linear w=equation , point- slope form of a linear equation,	

			standard	
	A.CED.1 Create	Write linear and exponential equations in one variable given information in	Equations,	
	equations and inequalities in one	a real-life situationWrite linear inequalities in one variable given information of a real-life	solve equations,	Test
	variable and use them to solve problems.	 situation Manipulate the one variable equation to solve for the unknown using appropriate steps 	linear functions, quadratic	Quiz
October/ November	Include equations arising from linear and quadratic functions, and simple rational and exponential functions.	 Explain the solution set for a one variable inequality 	functions, rational functions, exponential functions, coordinate axes, model,	Written Work
	A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.	 Draw a visual representation of an equation related to a real-life situation complete with appropriate labels. Write equation in two or more variables given information in a real-life situation Manipulate the two or more variable equation to solve for the specified unknown using appropriate steps Rewrite an equation to solve for the specified unknown 	axes, model, formula, context of the problem, m(symbol of slope), b (symbol of y- intercept), independent variable, dependent	
	N.Q.2 Define appropriate quantities for the purpose of descriptive modeling.	 Draw an appropriate representation of the data given the units Write an appropriate viewing window to model given data 	slope/undefine d slope, leading coefficient, bivariate data, domain.	
	 F.BF.1 Write a function that describes a relationship between two quantities.★ a. Determine an explicit expression, a recursive process, or steps for 	 Recognize rate of change and explain the meaning Create a recursive expression that represents a real world problem 	range, asymptotes, standard form, vertex form	

	cuiduon nom d			
b. C fund ariti <i>For</i> <i>fund</i> <i>tem</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>a</i> <i>coo</i> <i>coo</i> <i>a</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i>coo</i> <i></i>	Combine standard action types using thmetic operations. <i>r example, build a</i> <i>nction that models the</i> <i>mperature of a</i> <i>oling body by adding</i> <i>constant function to a</i> <i>caying exponential,</i> <i>d relate these</i>	 Recognize an initial condition for a functional relationship and explain Its meaning Given an initial condition and a rate of change, I can create a Recursive expression. 	Function, expression, recursive, simplified equation, combine like terms, arithmetic	
E BI	RE 2 Write arithmetic		sequence, geometric	
and seq recu exp their situ bety	d geometric quences both cursively and with an plicit formula, use em to model uations, and translate tween the two forms.	 Given a recursive expression I can create a story to model the expression Combine functions using arithmetic operations; i.e. F(h) = g(h) + j(h) 	sequence	
S.IE cate cate frec Inte frec con (inc mar con	D.5 Summarize regorical data for two regories in two-way quency tables. rerpret relative quencies in the ntext of the data cluding joint, arginal, and nditional relative	 Make a frequency table, given data in a scatter-plot of other format Determine the mean, median & mode given a frequency table Recognize and explain the associations and trends represented by the data in a frequency table 	Categorical data, frequency tables, central tendencies, joint relative frequencies, marginal	
frec	quencies).		frequencies, conditional	

Recognize possible associations and trends in the data. S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.	 Use a frequency table to create a graph Explain the relationship of the data and how the variables relate to each other based on whether a linear or non-linear graph Recognize and explain why a given set of data represents a linear or exponential function Use a function and its graph to interpolate additional data to solve real-life problems Informally interpret the correlation of the fit a function by studying the relationship of data points plotted on a coordinate plane Draw a line-of-best-fit to represent a "data cloud" or scatter-plot Use the correlation coefficient to decide appropriateness of a linear model Use technology to graph a line-of-best-fit 	relative frequencies, scatter plot, function, linear models, exponential models, quadratic models, correlation coefficient, mean, median, mode, interpolate, line-of-best-fit, line-of-best-fit	
S.ID.7 Interpret the slope (rate of change) and the intercept constant term) of a linear model in the context of the data. S.ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.	 Explain the meaning of the slope and y-intercept in relation to the two variables, given an equation in slope-intercept form and related graph with variables and units Use technology to compute a linear correlation coefficient Use the correlation coefficient to determine if a line is a good model for the data Use the correlation coefficient to determine if the data has a positive or negation correlation 	Slope, y- intercept, coordinate plane, ordered pairs, plotting points, y=mx+b, causal relationship, correlation coefficient, correlation, causation	

	S.ID.9 Distinguish between correlation and causation.	 Identify when an obvious causation does not exist Create real-life experiment to represent how the correlation change of one variable affects another variable but that the one may not have a causal relationship to the other 		
December	 A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or non-viable options in a modeling context. <i>For example,</i> <i>represent inequalities</i> <i>describing nutritional</i> <i>and cost constraints on</i> <i>combinations of</i> <i>different foods.</i> A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. 	 List an appropriate set of possible values for the domain, given a real-life situation Write a real-life situation, given a set of constraints List appropriate solutions displayed by the graph of an inequality Solve linear equations of one designated variable, including those with letters as coefficients Utilize the four properties of equality to maintain the balance of an equation Apply the properties of numbers Solve inequalities of one variable and explain the steps Model the solution set of inequalities on a number line Given an equation, or inequality, develop a representative story 	Equations, solve equations, linear functions, quadratic functions, functions, Linear equations, linear inequalities, coefficients, coefficients, commutative property, associative property, distributive property, inverse property,	Lab report Test Quiz Written Work Notebook
December /January	A.CED.1 Create equations and inequalities in one variable and use them to solve problems. <i>Include equations</i>	 Write linear and exponential equations in one variable given information in a real-life situation Write linear inequalities in one variable given information of a real-life situation Manipulate the one variable equation to solve for the unknown using appropriate steps 	Equations, solve equations, linear functions, quadratic	Test Quiz

	arising from linear and	•	Explain the solution set for a one variable inequality	functions,	Written
	quadratic functions, and			rational	Work
	simple rational and			exponential	
	exponential functions.			functions,	Notebook
				coordinate	
				axes, independent	
	A.REI.5 Prove that,			variable,	
	given a system of two			dependent	
	equations in two	•	Solve a system of equations using combinations	variable, no	
	variables, replacing one	•	Solve a system of equations using substitution	slope/undefine	
	equation by the sum of		Prove that a particular answer is or is not correct	domain	
	that equation and a			range,	
	multiple of			asymptotes,	
Januany	the other produces a			standard form,	
January	solutions			Calutions	
	5010110115.			Solutions,	
	A.REI.6 Solve systems			equations in	
	of linear equations			two variables,	
	exactly and	•	Solve a system of equations by graphing	one solution	
	approximately	•	Write a system of equations to solve a given problem situation	(ordered pair),	
	(e.g., with graphs),	•	Prove if a particular answer is correct	infinitely many	
	focusing on pairs of			solutions,	
	linear equations in two			system of	
	vai laules.			equations,	
	A REI 7 Solve a simple			lines parallel	
	system consisting of a			lines,	
	linear equation and a	•	Demonstrate and explain the process of using the substitution method to	intersecting	
	quadratic equation in		solve the system algebraically (between linear and quadratic equations)	lines, solve a	
	two variables	•	linear and quadratic equations)	system using	
	algebraically and	•	Demonstrate how to use a graphing calculator to determine the	(Addition and	
	graphically. For		solution(s) to a system (between linear and quadratic equations)	Elimination),	
	example, find the points	•	Create a system of equations to solve a problem situation (between linear	system using	
	or intersection between	1	and quadratic equations)	substitution	

	the line $y = -3x$ and the circle $x^2 + y^2 = 3$.	Prove whether a part (between linear and	cicular solution works for a given system of equations quadratic equations)	System of linear equations, system of quadratic equations	
February	N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. <i>For example, we define 51/3 to be the cube root of 5 because we want (51/3)3 = 5(1/3)3 to hold, so (51/3)3 must equal 5.</i>	Explain the meaning properties of expone Demonstrate how a non- Rewrite a radical exp	of a rational exponent through the use of the nts. radical can be written in exponential form.	Rational exponent, integer exponent, base, rational number, radical, square roots, cube roots, radical symbol	Test Quiz Written Work
	N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.	Rewrite a rational ex Demonstrate that the Simplify an expressio	ponent expression as a radical. e rules of exponents also work for rational exponents. n by combining like terms		
	A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they	Circle terms that are Use the distributive, a combining the like te Explain and demonst Explain and demonst	alike associative, and/or commutative properties to explain rms of a polynomial expression rate how to add two or more polynomial expressions rate how to subtract two polynomial expressions	Polynomials, closed under the operations of addition, subtraction,	

	are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.	Explain and demonstrate how multiply two or more polynomial expressions	and multiplication, polynomial standard form	
	A.SSE.2 Use the structure of an expression to identify ways to rewrite it. <i>For</i> <i>example, see</i> $x4 - y4$ <i>as</i> (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + y2).	 Demonstrate and explain how to factor a difference of squares Take a factored form of an expression and write a simplified expression 	Expression, terms, factors, coefficient, exponent, rational exponent,	
March	A.REI.4 Solve quadratic equations in one variable. a. Use the method of completing the square to transform any quadratic equation in <i>x</i> into an equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic	 Find the x-intercepts for the equation and determine the zeros of the function Demonstrate how to solve an equation by using the method of completing the square Apply completing the square to a projectile in motion problem Demonstrate how to solve quadratic equations by factoring Demonstrate how to solve quadratic equations using the quadratic formula Demonstrate how to solve quadratic equations through the process of completing the square and taking the square root of both sides Derive the quadratic formula from the completing the square format of (x - p)² = q 	Parent quadratic function, axis of symmetry, vertex , intercept form, quadratic equation, discriminant	Lab report Test Quiz Written Work Inquiry Lab

March/ April	equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers <i>a</i> and <i>b</i> .	 Demonstrate how using the quadratic function might yield an imaginary number and, when it does, write the solution in the form of a ± bi 		
	A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).	 Identify an exponential equation Create a table of solutions for a given equation in two variables Graph a set of solutions for a given equation in two variables Given a set of data, I can determine its equation Determine a coordinate is a solution to an equation in two variables construct a graph on a coordinate plane Use proper intervals for my graph How to label my axis for a given data set 	Graph, equation, variable, solution, coordinate plane, x- coordinate, function, linear function, polynomial	
	A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y =$ f(x) and $y = g(x)intersect are thesolutions of theequation f(x) = g(x);find the solutionsapproximately, e.g.,using technology tograph the functions,$	 Identify the features of a graphing calculator Use the functions of a graphing calculator Compare two contract options to determine which one is the best option for a given domain Find a solution given two functions by using one of the following methods - graphing, creating a table, or using a graphing calculator Graph an absolute value of a function Determine which contract would be the best choice, within a given domain Graph an exponential function 	function, rational function, absolute value function, exponential function, logarithmic function, linear inequality, system of linear inequalities	

	make tables of values, or find successive approximations. Include cases where $f(x)$ and/or g(x) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.* A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half- planes.	 Graph a linear inequality Graph a system of linear inequalities Identify a given point as a solution or non-solution to a given inequality in determining which half-plane is true Identify if the line is part of the solution or not Identify if a given point is a solution or non-solution to a given system of inequalities to determine which corresponding half-plane is true 		
	A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the	 Factor a quadratic expression Use the factors of the expression to determine the zeros of the function Explain why the function has zero, one, or two zeros of the function 	Factor, quadratic expression, zeros of a	Lab report Test
April	quantity represented bythe expression.a. Factor aquadratic expression toreveal the zeros of the	 Write a quadratic function, given a problem situation, and determine the "zeros" to find the values of the function Write a quadratic function given the zeros of the function 	function 9 (x- intercepts), quadratic in standard form, complete the square.	Quiz Written Work
	function it defines.	• Interpret the graph of a quadratic function and explain how the vertex is a maximum or minimum value	vertex, maximum point,	

	 b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. 	•	Complete the square to factor a quadratic function to determine the maximum or minimum value Use properties of exponents to transform expressions for exponential functions Rewrite an expression to reveal and explain properties of the quantity represented, given a problem situation	minimum point, exponential functions, properties of exponents, equivalent form	
Мау	F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If <i>f</i> is a function and <i>x</i> is an element of its domain, then $f(x)$ denotes the output of <i>f</i> corresponding to the input <i>x</i> . The graph of <i>f</i> is the graph of the equation $y = f(x)$.	•	Determine whether a relation is a function through the use of comparing ordered pairs, by use of a table, by mapping, or by creating a graph Demonstrate how the use of the vertical line test can show whether a particular graph is a function Determine the domain and range of a function given a set of ordered pairs, a table, or a graph	Function, domain, range, element, function notation, evaluate, sequences, output of the function, input, arithmetic sequence, geometric sequence	Lab report Test Quiz Written Work Inquiry Lab Project

	F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	 Use function notation to represent data represented by a given domain and range Calculate the output value of a function given an input value Determine relevant domain and range for given real-life situation 	
	F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. <i>For</i> <i>example, the Fibonacci</i> <i>sequence is defined</i> <i>recursively by f(0) =</i>	 Write a variable expression that represents a given sequence Use a variable expression representation of sequence to write the sequence using function notation Determine if a sequence is arithmetic or geometric 	
May	f(1) = 1, f(n+1) = f(n)+ $f(n-1)$ for $n \ge 1$. F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. <i>Key</i> <i>features include:</i> <i>intercepts; intervals</i> <i>where the function is</i> <i>increasing, decreasing,</i> <i>positive, or negative;</i>	 Graph a relationship between two quantities Determine / interpret the end behavior of the relations between two quantities Determine / interpret the intercepts of the relationship between two quantities 	Function, intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries;

	7				
Мау	relative maximums and minimums; symmetries; end behavior; and periodicity.★ F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.	•	Relate (match) the domain of a function to a graph Relate (match) a graph to its domain Determine the quantitative relationship of the function that a domain describes, given a real-world situation (i.e. The age of a car, the value of a car)	and periodicity, domain, average rate of change, exponential growth function, exponential decay function	
	 F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in 	•	Find the rate of change (slope) Tell when a linear function rises, falls, has a zero slope, or no slope Tell when an exponential function is growth or decay Use a graph to estimate the rate of change within a given interval, given a real-world model of a situation (i.e. compound interest; world population)	independent variable dependent variable, positive slope negative slope real number system, no slope/undefine d slope slope-intercept form intercepts	

	cimple cases and using		tabular form	
	simple cases and using	Draw a graph of a function using a coordinate plane	h (symbol for	
	technology for more	 Draw a graph of a function using a coordinate plane Input data into appropriate technology to create a graph of a function 	ν (symbol to $\nu_{\rm intercent}$)	
	complicated cases.	• Input data into appropriate technology to create a graph of a function originally expressed symbolically	domain range	
		Circle the maxima or minima of a graph of a guadratic equation	cube root	
	a. Graph linear and		function	
	guadratic functions and		symbolic form	
	show intercepts.		standard form	
	maxima, and minima.	Draw a graph of a function using a coordinate plane		
		 Draw a graph of a function using a coordinate plane Input data into technology to create a graph of a function originally 	negative	
	h Craph square rest	expressed symbolically	reciprocal	
	D. Graph square root,	 List the domain of a square root function using its graph 	recipiocal	
	cube root, and	 Distinguish between square root, cube root, absolute value and step 	rate of	
	piecewise-defined	functions graphs by explaining their key features	arowth	
	functions, including step		rate of decay	
	functions and absolute		growth factor	
	value functions.		decav factor	
May			half-life (decay	
,	F.IF.8 Write a function		factor)	
	defined by an		double-life	
	expression in different		(growth)	
	but equivalent forms to		doubling	
	reveal and evolain		time	
	different properties of		asymptote	
	the function		boundary line	
			infinity	
			x-infinity	
	a. Use the process of		difference of	
	factoring and	 Demonstrate how to solve a quadratic by factoring 	squares	
	completing the square	 Demonstrate how to solve a quadratic by completing the square 		
	in a quadratic function	 Visually identify the minimum, maximum, and zeros of the graph of the 	completing the	
	to show zeros, extreme	function	square	
	values, and symmetry of	Find the vertex algebraically	leading	
	the graph, and interpret	• Find the axis of symmetry using $x = \frac{-b}{2a}$	coefficient	
	these in terms of a	 Find the axis of symmetry by looking at a graph or table 	real zeros	
	context	 Find the axis of symmetry by averaging the x-intercepts 	solution sets	
	CONCEAL		zeros of the	
	h lles the properties of		TUNCTION	
	b. Use the properties of			
	exponents to interpret		diaguinainata	
			aiscriminate	

	expressions for exponential functions. For example, identify percent rate of change in functions such as $y =$ (1.02)t, $y = (0.97)t$, $y =(1.01)12t$, $y = (1.2)t/10$, and classify them as representing exponential growth or decay.	• Explain the differences between a growth function and a negative function	shift vertical shift horizontal shift tabular pattern parent function
Мау	F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	 Translate given data into another representation for comparison. (i.e. tabular to graphical, algebraically to tabular, etc) Compare vertices between two functions Compare translations between two functions Compare the width of the graphs of two functions Compare the number of real solutions of two functions Compare orientation of the graphs of the two functions Compare domain and range of two functions 	
	F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) +$ k, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with	 Use technology to graph quadratic functions and demonstrate the effects of a translation Identify the value of <i>k</i> that caused a given translation Identify the effect on a graph of a given translation 	Input, output, slope, y- intercept, x- intercept, coordinates, linear function,

	cases and illustrate an explanation of the effects on the graph using technology. <i>Include recognizing</i> <i>even and odd functions</i> <i>from their</i> <i>graphs and algebraic</i> <i>expressions for them.</i> F.BF.4 Find inverse functions. Solve an equation of the form f(x) = c for a simple function f that has an inverse and write an expression for the inverse.	• Find the equation of the inverse of a linear function Find the equation of the inverse of a linear function	quadratic function, translation, constant (denoted as k), argument of a linear function	
May	 F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals; and that exponential functions grow by equal factors over equal intervals. b. Recognize situations 	 Prove a linear function grows by an equal difference over equal intervals algebraically by constructing a table (rate of change) Prove a linear function grows by an equal difference over equal intervals by graphing (slope) Prove an exponential function grows by equal factors over equal intervals algebraically by constructing a table Prove an exponential function grows by equal factors over equal intervals algebraically by constructing intervals by equal factors over equal intervals algebraically by graphing (intervals) 	Exponential	Lab report Test Quiz Written Work Project
	in which one quantity	 Recognize a graph as a linear function by identifying the slope as a constant rate of change. 	Exponential functions,	

changes at a constant rate per unit interval relative to another.	 Recognize a table as a linear function by identifying the rate of change as constant. 	growth factor, decay factor, base, exponent,
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	 Recognize a graph as exponential. Recognize a table as exponential by its equal factors. 	function, linear functions, slope, constant rate of change, y- intercept, arithmetic
F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	 Write the general form of a linear equation given a table. Write the general form of a linear equation given a graph. Write the general form of a linear equation given a problem situation. Write the general form of an exponential equation given a table. Write the general form of an exponential equation given a graph. Write the general form of an exponential equation given a problem situation. 	sequences, geometric sequences, quadratic rate of change
F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	 Compare the graphs of a linear and exponential function to prove an exponential function will exceed the linear function. Compare the tables of a linear and exponential function to prove an exponential function will exceed the linear function. 	
F.LE.5 Interpret the parameters in a linear or exponential function in	 Interpret the parameters of a linear function, given a real-world situation Interpret the parameters of an exponential function, given a real-world situation 	Parameters, domain, range, linear

	terms of a context.		function, exponential function	
May/June	S.ID.1 Represent data with plots on the real number line (dot plots, histograms, and box plots). S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.	 Create a dot plot, or scatter plot, and determine the line of best fit Create a histogram and explain its meaning Create a box plot, or box and whisker plot, and explain its interpretation Draw conclusions from a dot plot, histogram, and/or box plot Calculate the mean of a data set Calculate the median of a data set Calculate the standard deviation of a data set Calculate the interquartile range of a data set Determine in which cases the mean or median is a better measure of center Determine in which cases the standard deviation or interquartile range is a better measure of spread Use appropriate statistics to compare two or more data sets 	Data, dot plots, histograms, box plots, data distribution, measures of central tendencies, median, mean, spread, interquartile range, standard deviation, outliers, symmetrical distribution	
	S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).	 Interpret how an extreme data point effects a data set Identify which measure is the most appropriate representation of the center of the data set Draw a symmetrical distribution of data points Interpret how an extreme data point effects the spread Identify which measure is the most appropriate representation of the spread of a data set 		