Mendon High School Biology Curriculum Map

Timelin	Standards/Benchmark	Learnin	Vocab	Assessmen
e	S	g Targets		t
September	Standard HS LS1.2Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular 	I CAN develop and use models to show how multicellular organism's systems carry out their functions. I CAN design and implement a procedure that shows how homeostasis is maintained.	breakdown of food molecules cellular communication cellular regulation cellular response cellular waste disposal environmental influence enzyme equilibrium feedback inhibition gene expression homeostasis hormone metamorphosis neuron neurotransmitte r pH recombination of genes regulatory response	Labs Lab Reports Projects Quizzes Test

Unit #1- Homeostasis and Body Systems

Timeline	Standards/Benchmarks	Learning Targets	Vocab	Assessment
September/	Standard HS LS1.6	I CAN explain	aerobic	Labs
October		how	anaerobic	
	Use a model to illustrate how	photosynthesis	ATP	Lab Reports
	photosynthesis transforms light	results in	breakdown of	1
	energy into stored chemical	macromolecules	food	Projects
	energy.	with stored	molecules	110jeets
		chemical energy,	carotenoids	<u>.</u>
	Clarification: Emphasis on	which formed		Quizzes
	illustrating inputs and outputs	from solar energy	cellular	
	of photosynthesis, and the	and less energetic	energy	Test
	transfer and transformation of	molecules.	conversion	
	energy. Specific biochemical		cellular	
	steps in the process should not	I CAN use a	respiration	
	be assessed.	model to show	chemical bond	
	be assessed.	how energy is	chemical	
		transferred during	reaction	
	Standard HS LS1.6	cellular	chlorophyll	
		respiration, and		
	Construct and revise an	the resulting	chloroplast	
	explanation based on evidence	molecules that	enzyme	
	for how carbon, hydrogen, and	form.	mitochondrion	
	oxygen from sugar molecules		molecular	
	may combine with other		energy	
	elements to form amino acids		molecule	
	and/or other large carbon-based		photosynthesis	
	molecules.		potential	
			energy	
	Clarification: Students should		product	
	be able to construct		product	
	explanations regarding the		recetort	
	source of the macromolecules		reactant	
	resulting from photosynthesis,		transforming	
	and how larger carbon		matter and/or	
	molecules such as amino acids		energy	
	result from sugars.			
	Standard HS LS1.7			
	Use a model to illustrate that			
	cellular respiration is a			
	chemical process whereby the			
	bonds of food molecules and			
	oxygen molecules are broken			
	and the bonds in new			
	compounds are formed			
	resulting in a net transfer of			
	energy.			

Unit #2- Photosynthesis and Cellular Respiration

Clarification: When teaching	
cellular respiration, emphasis	
is on inputs and outputs, and	
energy transfers and	
transformations.	

Unit #3- Energy and Carbon Cycling

Timeline	Standards/Benchmarks	Learning Targets	Vocab	Assessment
October	Standard HS LS2.3	I CAN explain matter and	Abiotic components of	Labs
	Construct and revise an explanation based on evidence	energy cycling in an ecosystem,	ecosystems autotroph	Lab Reports
	for the cycling of matter and flow of energy in aerobic and	under aerobic and anaerobic	biological molecule	Projects
	anaerobic conditions.	conditions.	breakdown of food molecules	Quizzes
	Clarification: Students construct explanations of how	I CAN describe the movement of	carbon	Test
	photosynthesis and respiration drive cycling	carbon through the biotic and	carbon cycle carbon dioxide	
	of matter and flow of energy,	abiotic systems as it relates to	cellular energy conversion	
	including the presence of anaerobic respiration) in	photosynthesis and cellular	cellular respiration	
	anaerboic environments.	respiration.	chemical bond chemical	
	Standard HS LS2.4		organization of organisms	
	Use mathematical representations to support			
	claims for the cycling of matter and flow of energy		consumer decomposition	
	among organisms in an ecosystem.		energy requirements of	
	Clarification: Students use		living systems flow of energy	
	mathmatical models of energy and biomass at different		flow of matter heterotroph	
	trophic levels to support their claims regarding energy		organic	
	transfer in food webs. Assessment limited to		compound organic	
	proportional reasoning when describing flow of matter and		compound	
	energy.		synthesis organic matter	
	Standard HS LS2.5 Develop a model to illustrate		photosynthesizing	
	the role of photosynthesis and cellular respiration in the			
	cycling of carbon among the			

biosphere, atmosphere, hydrosphere, and geosphere.
Clarification: Assessment should not include specific steps of chemical processes or quantitative analysis of carbon cycling.

Unit #4- Mitosis and Meiosis

Timeline	Standards/Benchmarks	Learning Targets	Vocab	Assessment
January Use a mode cellular div differentiat	Standard HS LS1.4 Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintain complex organisms.	TargetsI CAN use amodel toillustrate theprocess ofmitosis andexplain itsrole incellulardifferentiation	Cancer Chromosome Chromosome pair Differentiation	Labs Lab Reports Projects Quizzes
	Clarification: Emphasis is on the overall process and its role, not memorizing the names of the steps or specific gene control mechanisms. Include the concept of differentiated cell types in multicellular organisms forming due to different expression of genes, not different genetic content. The models used to describe mitosis should be evaluated by students in terms of accuracy.	differentiation	Diploid Duplication of genes Haploid Mitosis Multicellular Mutation	Test

Timeline	Standards/Benchmarks	Learning Targets	Vocab	Assessment
January/ February	Standard HS LS1.1 Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells. Clarification: This standard includes DNA structure, and relating that structure to the mechanism of protein synthesis. Biochemistry of protein synthesis not assessed While some explanations of proteins is required, assessment should not extend to the details of protein structure. Emphasis is placed on amino acid composition and general functions of proteins in living systems. Genes can be described as regions of DNA that code for proteins or have a regulatory function.	I CAN use evidence to explain the structure of DNA, and how DNA determines the structure of essential proteins	amino acid sequence cell nucleus DNA molecule DNA sequence DNA subunit double helix enzyme gene messenger RNA protein protein structure protein synthesis ribosome specialized cell storage of genetic information tissue transcription transfer RNA translation	Labs Lab Reports Projects Quizzes Test

Unit #5- DNA to Protein

Timeline	Standards/Benchmarks	Learning	Vocab	Assessment
		Targets		
February/ March	Standard HS LS3.1 Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring. Clarification: Explicitly teach the cause and effect relationship between DNA, the proteins it codes for, and the resulting traits.	0	biological adaptation complementa ry sequence crossing over degree of kinship deletion DNA DNA replication dominant evidence for unity among	Labs Lab Reports Projects Quizzes Test
			organisms Gametes genetic diversity genetic mutation genetic variation genotype heterozygous inherited trait jumping genes karyotype meiosis new gene combinations phenotype	

Unit #6- Inheritance and Variation

progeny recessive recombinatio n of	
genetic material sex cell sex chromosomes	

Unit #7- Ecosystems

Timeline	Standards/Benchmarks	Learning	Vocab	Assessment
		Targets		
April	Standard HS LS2.1 Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales. Clarification: emphasis on quantitative analysis and comparison among interdependent	I CAN use mathematical representations to determine factors affecting carrying capacity and biodiversity	abiotic component of the ecosystem biological adaptations carrying capacity ecosystem	Labs Lab Reports Projects Quizzes
	factors (boundaries, resources, climate etc.) Standard HS LS2.2 Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales	I CAN investigate and draw conclusions regarding how environmental stability and behaviors affect species diversity, speciation and extinction	stability equilibrium of ecosystems exponential growth population dynamics reproductive capacity succession	Test

Unit #8- Human Impacts and Mitigations

Timelin	Standards/Benchmark	Learning	Vocab	Assessmen
e	s	Targets		t
April/ May	Standard HS LS2.7 Design, evaluate, refine a solution for reducing the impacts of human activities on the environment and biodiversity. Clarification: examples of human activities with an environmental	I CAN design, evaluate and revise methods for reducing adverse	climate change conservation desertificatio n extinction global	Labs Lab Reports Quizzes Test
	impact include urbanization, dam building, dissemination of invasive species and increasing	human environmental impacts. Use a	warming invasive	Test

insulation properties of the atmosphere. Standard HS LS4.6 Create of revise a simulation to test a solution to mitigate adverse impacts of human activity and biodiversity	model to illustrate how photosynthesi s transforms light energy into stored chemical energy	species resource management urbanization	
--	--	---	--

Timelin **Standards/Benchmark** Vocab Learning Assessmen Targets t e S May/June Standard HS LS4.1 I CAN use biodiversity Labs genetic, biological Communicate scientific information that multiple lines of biochemical, evolution Lab Reports empirical evidence support anatomical, chance common ancestry and biological and inherited Projects evolution. embryologica variants 1 information, comparative Quizzes Clarification: Students should be as well as anatomy degree of able to use at least 2 formats to order of Test identify and communicate kinship appearance, scientific information regarding to provide differential common ancestry and biological evidence of survival evolution supported by multiple evolution DNA lines of empirical evidence. DNA molecule I CAN use **Standard HS LS4.2** evidence to embryonic Construct an explanation based on explain how stages of evidence that the process of different development evolution primarily results from factors can evidence for our factors influence an the unity organism's among Standard HS LS4.4 ability to Construct an explanation based on compete for organisms evidence for how natural selection limited gene pool leads to adaption of populations. resources and genetic drift Clarification: Emphasis on how subsequent genetic specific biotic and abiotic factors, survival and diversity including the actions of humans, adaption of genetic contribute to a change in gene the species mutation frequency over time. genetic variation **Standard HS LS4.5** Evaluate the evidence supporting homomologou claims that changes in s structures environmental conditions may molecular result in (1) increases in the structures number of individuals of some morphological

Unit #9- Evolution and Natural Selection

species, (2) the emergence of new species over time, and (3) the extinction of other species	structures natural selection
	origin of life phylogenetics recombination of genetic material speciation