	I know..." Statements (Concepts CONNECTIONS - Nouns - Big Ideas)	"I can..." Statements (Skills - Verbs Learning Targets Enduring Understanding)	Lesson	Marking Period	Vocabulary
Unit 1: Congruence, Proof, and Constructions G.CO. 1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	I know the definition of an angle.	I can describe an angle precisely. I CAN MEASURE AN ANGLE OR COMPUTE ITS MEASURE BASED ON A DIAGRAM.	Start Here:		Ray, vertex, angle
	I know the definition of a circle.	I can describe a circle precisely.	$\begin{gathered} \hline 1-1, \\ 1-3, \\ 1-4, \\ 1-5, \\ 3-1, \\ 10-1, \\ 10-2 \end{gathered}$		Points, equidistant, center
	I know the definition of perpendicular lines.	I can describe a set of perpendicular lines AND DETERMINE IF TWO LINES ARE PERPENDICULAR BASED ON A DIAGRAM.			Line, intersect, right angle
	I know the definition of parallel lines.	I can describe a set of parallel lines.			Line, intersect, coplanar
	I know the undefined terms, point \& line.	I can describe a point and a line.			Dimension
	I know the undefined term, distance along a line.	I can describe the distance along a line.			Point, absolute value
	I know the undefined term, distance around a circular arc.	I can describe the distance around a circular arc.			Circumference, ratio, arc
G.CO. 2 Represent	I know how to represent transformations	I can draw transformations of			Transformation,

Geometry Mathematical Common Core State Standards

transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation versus horizontal stretch).	of reflections, rotations, translations, and combinations of these in the plane using the appropriate tools.	reflections, rotations, translations, and combinations of these using appropriate tools.	$\begin{aligned} & 9-1, \\ & 9-2, \\ & 9-3, \\ & 9-5, \\ & 9-6, \end{aligned}$	reflection, rotation, translation, image, preimage
	I know how to describe transformations as functions that take points in the plane as inputs and give other points as outputs.	I can determine the coordinates for the image (output) of a figure when a transformation rule is applied to the preimage (input).		Transformation, reflection, rotation, translation, image, preimage, input, output, coordinates
	I know how to compare transformations that preserve distance and angle to those that do not.	I can distinguish between transformations that are rigid (preserve distance and angle measure - reflections, rotations, translations, or combinations of these) and those that are not (dilations or rigid motions followed by dilations).		Transformation, reflection, rotation, translation, image, preimage, input, output, coordinates, dilation, rigid motion, distance, angle measure
G.CO. 3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	I know how a rectangle is mapped onto itself using transformations.	I can describe and illustrate how a rectangle is mapped onto itself using transformations.	$\begin{aligned} & 9-1, \\ & 9-3, \end{aligned}$	Rectangle, mapped onto
	I know how a parallelogram is mapped onto itself using transformations.	I can describe and illustrate how a parallelogram is mapped onto itself using transformations.		Parallelogram, mapped onto
	I know how an isosceles trapezoid is mapped onto itself using transformations.	I can describe and illustrate how an isosceles trapezoid is mapped onto itself using transformations.		Isosceles trapezoid, mapped onto
	I know the number of lines of reflection symmetry of any regular polygon.	I can calculate the number of lines of reflection symmetry of any regular polygon.		Regular polygon, reflection symmetry

Geometry Mathematical Common Core State Standards

		I can demonstrate that when distance is preserved (corresponding sides are congruent) and angle measure is preserved (corresponding angles are congruent) the triangles must also be congruent. I can define rigid motions as reflections, rotations, translations, and combinations of these, all of which preserve distance and angle measre. I can list the sufficient conditions to prove triangles are congruent. I can map a triangle with one of the sufficient conditions(e.g. SSS) onto the original triangle and show that corresponding sides and corresponding angles are congruent.		
G.CO. 9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the	I know theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints so I can use them in proofs.	I can use theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints to solve proofs. I can identify and use the properties of	$\begin{aligned} & 2-5 \\ & 2-7 \\ & 2-8 \end{aligned}$	Theorem, linear pair, vertical angles, alternate interior angles, alternate exterior, same-side interior angles, corresponding angles, perpendicular bisector,

segment's endpoints.
G.CO. 10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.
G.CO. 11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent, the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.

Prove that the measures of the interior angles of a triangle add to 180 degrees.

Prove that the base angles of an isosceles triangle are congruent.

Construct midsegments for each of the sides of a triangle.

Prove congruency and other information about parallelograms. I can do this using a variety of proof types. I.E. paragraph, two-column and other informal and formal proofs.
congruence and equality (reflexive, symmetric, transitive) in my proofs.

I can order statements based on the Law of Syllogism when constructing my proof.

I can correctly interpret geometric diagrams by identifying what can and cannot be assumed.

I can use theorems, postulates, or definitions to prove theorems about lines and angles, including:
a. Vertical angles are congruent;
b. When a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent, and same-side interior angles are supplementary;
c. Points on a perperndicular bisector of a line segment are exactly those equidistant from the segment's endpoints.

I can order statements based on the Law of Syllogism when constructing my proof.

I can correctly interpret geometric diagrams (what can and cannot be assumed).

I can use theorems, postulates, or definitions to prove theorems about
supplementary
angles, complimentary angles, equidistant, congruent properties, adjacent, consecutive/nonconsecutive, reflection, Law of Syllogism, midpoint, midsegment, isosceles triangle, median, centroid, median, centroid,
coordinate proof,
quadrilateral,
parallelogram,
rectangle, distance
formula, midpoint
formula, slope, bisector, Syllogism, parallelogram

8-3,
8-4,
8-5

4-6,
4-7,
5-1,

Geometry Mathematical Common Core State Standards

perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. G.CO. 13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Construct polygons inscribed in circles.	constructions listed above using string, reflective devices, paper folding, and/or dynamic geometric software. I can define inscribed polygons (the vertices of the figure must be points on the circle). I can construct an equilateral triangle inscribed in a circle. I can construct a square inscribed in a circle. I can construct a hexagon inscribed in a circle. I can explain the steps to constructing an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	$\text { Pg. } 559$ in Chapter 10	equilateral triangle, square, regular hexagon, inscribe, circle
Unit 2: Similarity, Proof, and Trigonometry				
G.SRT. 1 Verify experimentally the properties of dilations given by a center and a scale factor. a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center	Identify a dilation given by its center and scale factor.	I can define a dilation. I can perform a dilation with a given center and scale factor on a figure in the coordinate plane. I can verify that when a side passes through the center of dilation, the side and its image lie on the same line. I can verify that corresponding sides of	9-5 a little but not really there	Dilation, center, scale factor, image, slope, parallel, corresponding sides, preimage, distance, segment, ratio, similarity, composition, rigid motion, dilation, angle measure,

unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. G.SRT. 2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G.SRT. 3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar.	Use the definition of similarity with transformations to decide if two figures are similar. Explain using transformations that the meaning of similarity of triangles is the equality of corresponding pairs of angles and the proportionality of all corresponding sides. Use the properties of similarity transformations to establish AA for similarity to prove two triangles are similar.	the preimage and images are parallel. I can verify that a side length of the image is equal to the scale factor multiplied by the corresponding side length of the preimage. I can define similarity as a composition of rigid motions followed by dilations in which angle measure is preserved and side length is proportional. I can identify corresponding sides and corresponding angles of similar triangles. I can demonstrate that in a pair of similar triangles, corresponding angles are congruent (angle measure is preserved) and corresponding sides are proportional. I can determine that two figures are similar by verifying that angle measure is preserved and corresponding sides are proportional. I can show and explain that when two angle measures are known (AA), the third angle measure is also known (Third Angle Theorem). I can conclude and explain that AA similarity is a sufficient condition for two triangles to be similar.	$9-5,$ Not in 9-5 or63 Not in book	side length, proportion, corresponding angles, similarity transformation, angle measure,

	triangles.	I can draw right triangles that describe real world problems and label the sides and angles with their given measures. I can solve application problems involving right triangles, including angle of elevation and depression, navigation, and surveying.		
G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* G.MG. 2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).* G.MG. 3 Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems	Apply density in area and volume situations. Find the surface area of a prism or cylinder. Find the surface area of pyramids and cones. Give an informal argument about the formula for the volume of a sphere. Apply geometry methods to solve design problems. Analyze what multiplying one or more of the dimensions of a figure does, and how it affects its attributes.	I can represent real-world objects as geometric figures. I can estimate measures (circumference, area, perimeter, volume) of real-world objects using comparable geometric shapes or three-dimensional figures. I can apply the properties of geometric figures to comparable real-world objects. (spokes are like radius) I can decide whether it is best to calculate or estimate the area or volume of a geometric figure and perform the calculation or estimation. I can break composite geometric figures into manageable pieces. I can convert units of measure (e.g., convert square feet to square miles). I can apply area and volume to	$\begin{gathered} 11-1,11- \\ 2 \\ 11-3,12- \\ 3 \\ 12-4,12- \\ 5 \\ 12-6,12- \\ 7 \end{gathered}$ 11-1,11- 2 11-3,12- 3 12-4,12- 5 12-6,12- 7	Circumference, area, perimeter, volume, unit of measure, convert, density, composite figures, geometric model, graph, equation, table formula

Geometry Mathematical Common Core State Standards

$\left.\left.\begin{array}{|l|l|l|l}\hline & \begin{array}{l}\text { altitude, and simplifying the equation } \\ \text { that results from setting these } \\ \text { expressions equal } \\ \text { sinA/a=sinB/b=sinC/c. }\end{array} \\ \text { I can use the law of sines to solve real } \\ \text { world problems. } \\ \text { I can draw an altitude to create two } \\ \text { right triangles and can establish the } \\ \text { relationships of the sides in each right } \\ \text { triangle using the sine and cosine } \\ \text { functions of a single angle in the } \\ \text { original triangle. }\end{array}\right\} \begin{array}{l}\text { I can derive the law of cosines using } \\ \text { the Pythagorean theorem, two right } \\ \text { triangles formed by drawing an } \\ \text { altitude, and substitution. } \\ \text { I can generalize the law of cosines to } \\ \text { apply to each included angle. } \\ \text { I can use the law of cosines to solve } \\ \text { real world problems. } \\ \text { I can use the triangle inequality and } \\ \text { side/angle relationships to estimate } \\ \text { the measures of unknown sides and } \\ \text { angles. } \\ \text { I can distinguish between situations } \\ \text { that require the law of sines } \\ \text { (ASA,AAS, SSA) and situations that } \\ \text { require the law of cosines (SAS, SSS). }\end{array}\right\}$

Geometry Mathematical Common Core State Standards

[^0]| | | I can explain that the volue of a pyramid is $1 / 3$ the volume of a prism with the same base area and height and that the volume of a cone is $1 / 3$ the volume of a cylinder with same base area and height.
 I can defend the statement,"The formula for the volume of a cone is basically the same as the formula for the volume of a pyramid." | | |
| :---: | :---: | :---: | :---: | :---: |
| G.GMD. 4 Identify the shapes of two-dimensional crosssections of three dimensional objects, and identify threedimensional objects generated by rotations of twodimensional objects. | Identify the shapes of two- dimensional cross-sections that are cut from threedimensional objects. | | 12-1 | |
| G.MG. 1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* | Apply density in area and volume situations.
 Apply geometry methods to solve design problems. | | | |
| Unit 4: Connecting Algebra and Geometry Through Coordinates | | | | |
| G.GPE. 4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or | Use coordinate Geometry to prove that a figure is a rectangle, or that a point lies in or on the circle. | I can use coordinates to prove simple Geometry. | $\begin{aligned} & 4-7, \\ & 8-7 \end{aligned}$ | Coordinates, rectangle, points, circles, |

Geometry Mathematical Common Core State Standards

Geometry Mathematical Common Core State Standards

Geometry Mathematical Common Core State Standards

 sample of students in your

Geometry Mathematical Common Core State Standards

he answer in terms of the odel. CP. 7 Apply the Addition ule, $P(A$ or $B)=P(A)+P(B)-$ $(A$ and $B)$, and interpret the nswer in terms of the model. CP. 8 (+) Apply the general Multiplication Rule in a niform probability model,					

Geometry Mathematical Common Core State Standards

$\begin{aligned} & P(A \text { and } B)=P(A) P(B \mid A)= \\ & P(B) P(A \mid B) \text {, and interpret the } \end{aligned}$ answer in terms of the model. S.CP. 9 (+) Use permutations and combinations to compute probabilities of compound events and solve problems.					
S.MD. 6 (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). S.MD. 7 (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).					

[^0]: 8/29/2016

