	I know" Statements (Concepts – <u>CONNECTIONS</u> - Nouns - Big Ideas)	"I can" Statements (Skills – Verbs – Learning Targets Enduring Understanding)	Lesson	Marking Period	Vocabulary
	I know the definition of an angle.	I can describe an angle precisely.	Start		Ray, vertex, angle
		I CAN MEASURE AN	Here:		
		ANGLE OR COMPUTE ITS			
		MEASURE BASED ON A			
		DIAGRAM.			
Unit 1: Congruence, Proof, and Constructions G.CO.1 Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc.	I know the definition of a circle. I know the definition of perpendicular lines.	I can describe a circle precisely. I can describe a set of perpendicular lines AND DETERMINE IF TWO LINES ARE PERPENDICULAR BASED	1-1, 1-3, 1-4, 1-5, 3-1, 10-1, 10-2		Points, equidistant, center Line, intersect, right angle
	Linew the definition of nerallel lines	ON A DIAGRAM.			Line intercept
	i know the definition of parallel lines.	i can describe a set of parallel lines.			coplanar
	I know the undefined terms, point & line.	I can describe a point and a line.			Dimension
	I know the undefined term, distance along a line.	I can describe the distance along a line.			Point, absolute value
	I know the undefined term, distance around a circular arc.	I can describe the distance around a circular arc.			Circumference, ratio, arc
G.CO.2 Represent	I know how to represent transformations	I can draw transformations of			Transformation,

transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g., translation	of reflections, rotations, translations, and combinations of these in the plane using the appropriate tools. I know how to describe transformations as functions that take points in the plane as inputs and give other points as outputs.	reflections, rotations, translations, and combinations of these using appropriate tools. I can determine the coordinates for the image (output) of a figure when a transformation rule is applied to the preimage (input).	9-1, 9-2, 9-3, 9-5, 9-6,	reflection, rotation, translation, image, preimage Transformation, reflection, rotation, translation, image, preimage, input,
				output, coordinates
	I know how to compare transformations that preserve distance and angle to those that do not.	I can distinguish between transformations that are rigid (preserve distance and angle measure – reflections, rotations, translations, or combinations of these) and those that are not (dilations or rigid motions followed by dilations).		Transformation, reflection, rotation, translation, image, preimage, input, output, coordinates, dilation, rigid motion, distance, angle measure
	I know how a rectangle is mapped onto itself using transformations.	I can describe and illustrate how a rectangle is mapped onto itself using transformations.	9-1, 9-3,	Rectangle, mapped onto
G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	I know how a parallelogram is mapped onto itself using transformations.	I can describe and illustrate how a parallelogram is mapped onto itself using transformations.		Parallelogram, mapped onto
	I know how an isosceles trapezoid is mapped onto itself using transformations.	I can describe and illustrate how an isosceles trapezoid is mapped onto itself using transformations.		Isosceles trapezoid, mapped onto
	I know the number of lines of reflection symmetry of any regular polygon.	I can calculate the number of lines of reflection symmetry of any regular polygon.		Regular polygon, reflection symmetry

	I know the degree of rotational symmetry of any regular polygon.	I can calculate the degree of rotational symmetry of any regular polygon.		Regular polygon, rotational symmetry
	I know the definition of rotations in terms of angles.	I can construct the rotation definition by connecting the center of rotation to any point of the preimage and to its corresponding point on the rotated image.	9-1, 9-2, 9-3, 9-5, 9-6	Rotation, preimage, image, angle, center of rotation
	I know the measure of the angle as part of the definition of rotations.	I can describe the measure of the angle formed and the equal measures of the segments that formed the angle as part of the definition.		
G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles,	I know how to translate figures using coordinates or lines.	I can construct the reflection definition by connecting any point on the preimage to its corresponding point on the reflected image.		
perpendicular lines, parallel lines, and line segments.		I can describe the line segment's relationship to the line of reflection.		
		I can construct the translation definition by connecting any point on the preimage to its corresponding point on the translated image.		
		I can connect a second point on the preimage to its corresponding point on the translated image.		
		I can describe how the two segments are equal in length, point in the same direction, and are parallel.		
G.CO.5 Given a geometric	I know how to rotate, reflect, and	I can draw a specific transformation	4-3,	Reflection,
figure and a rotation,	translate figures.	when given a geometric figure and a	9-1,	rotation,
reflection, or translation, draw		rotation, reflection, or translation.	9-2,	translation, figure,
the transformed figure using,	I know how to write a sequence of		9-3	map,

e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.	transformations.	I can predict and verify the sequence of transformations (a composition) that will map a figure onto another.		transformation, composition
G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. G.CO.7 Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions.	I know how to rotate, reflect, and translate figures. I know what makes two or more figures congruent. I know what rigid motions are. I know what corresponding sides and angles are.	 I can define rigid motions as reflections, rotations, translations, and combinations of these, all of which preserve distance and angle measure. I can define congruent figures as figures that have the same shape and size and state that a composition of rigid motions will map one congruent figure onto the other. I can predict the composition of transformations that will map a figure onto a congruent figure. I can determine if two figures are congruent by determining if rigid motions will turn one figure into the other. I can identify corresponding sides and corresponding angles of congruent triangles. I can explain that in a pair of congruent triangles, corresponding sides are congruent (distance is 	4-3 9-1, 9-2, 9-3 4-3, 4-4	Congruence, composition, rigid motions, map, reflection, rotation, translation, transformation, angle measure, distance, SAS, ASA, SSS
		preserved) and corresponding angles are congruent (angle measure is preserved).		

		I can demonstrate that when distance is preserved (corresponding sides are congruent) and angle measure is preserved (corresponding angles are congruent) the triangles must also be congruent) the triangles must also be congruent. I can define rigid motions as reflections, rotations, translations, and combinations of these, all of which preserve distance and angle measre. I can list the sufficient conditions to prove triangles are congruent. I can map a triangle with one of the sufficient conditions(e.g. SSS) onto the original triangle and show that corresponding sides and corresponding angles are congruent.		
G.CO.9 Prove theorems about lines and angles. <i>Theorems</i> <i>include: vertical angles are</i> <i>congruent; when a transversal</i> <i>crosses parallel lines,</i> <i>alternate interior angles are</i> <i>congruent and corresponding</i> <i>angles are congruent; points</i> <i>on a perpendicular bisector of</i> <i>a line segment are exactly</i> <i>those equidistant from the</i>	I know theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints so I can use them in proofs.	I can use theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints to solve proofs. I can identify and use the properties of	2-5, 2-7, 2-8,	Theorem, linear pair, vertical angles, alternate interior angles, alternate exterior, same-side interior angles, corresponding angles, perpendicular bisector,

segment's endpoints.		congruence and equality (reflexive,		supplementary
	Prove that the measures of the interior	symmetric, transitive) in my proofs.		angles,
G.CO.10 Prove theorems	angles of a triangle add to 180 degrees.	Loop and an atom on the base of any the		complimentary
about triangles. <i>Theorems</i>	Prove that the base angles of an isosceles	I can order statements based on the	4-2,	angles, equidistant,
Include: measures of Interior	triangle are congruent	Law of Syllogism when constructing	4-6,	congruent
		my proof.	4-7,	properties,
180 ; base angles of isosceles	Construct midsegments for each of the	I can correctly interpret geometric	5-1,	adjacent,
inungies are congruent, the	sides of a triangle.	diagrams by identifying what can and	6-4,	consecutive/non-
segment joining mupoints of	_	cannot be assumed.		consecutive,
two sides of a that hird side and				reflection, Law of
half the length: the medians of	Prove congruency and other information	I can use theorems, postulates, or		Syllogism,
a trianale meet at a noint	about parallelograms. I can do this using a	definitions to prove theorems about		midpoint,
	variety of proof types. I.E. paragraph,	lines and angles, including:		midsegment,
G.CO.11 Prove theorems	two-column and other informal and	 a. Vertical angles are congruent; 		isosceles triangle,
about parallelograms.	formal proofs.	b. When a transversal crosses parallel		coordinate proof
Theorems include: opposite		lines, alternate interior angles are		quadrilatoral
sides are congruent, opposite		congruent and corresponding angles	8-3,	narallelogram
angles are congruent, the		are congruent, and same-side interior	8-4,	rectangle distance
diagonals of a parallelogram		angles are supplementary;	8-5	formula, midpoint
bisect each other, and		c. Points on a perpendicular disector		formula, slope.
conversely, rectangles are		of a line segment are exactly those		bisector.
parallelograms with congruent		equidistant from the segment s		
diagonals.		endpoints.		
		I can order statements based on the		
		Law of Syllogism when constructing		
		my proof.		
		, ,		
		I can correctly interpret geometric		
		diagrams (what can and cannot be		
		assumed).		
		I can use theorems nestulates or		
		definitions to prove theorems about		
		deminitions to prove theorems about		

		 triangles, including: a. Measures of interior angles of a triangle sum to 180. b. Base angles of isosceles triangles are congruent; c. The segment joining midpoints of two sides of a triangle is parallel to the tird side and half the length; d. The medians of a triangle meet at a point. I can use theorems, postulates, or definitions to prove theorems about parallelograms, including: a. Prove opposite sides of a parallelogram are congruent; b. Prove opposite angles of a parallelogram bisect each other; d. Prove that rectangles are parallelograms with congruent diagonals. 		
G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software, etc.). Copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing	Use tools and methods to construct segments, angles, perpendicular lines and bisectors, parallel lines, etc.	I can identify the tools used in formal constructions. I can use tools and methods to precisely copy a segment, copy an angle, bisect a segment, bisect an angle, construct perpendicular lines and bisectors, and construct a line parallel to a given line through a point not on the line. I can informally perform the	1-1, 1-4, 1-5,	Segment, angle, perpendicular lines, perpendicular bisector, parallel lines, bisect, formal construction, informal construction, compass, straightedge,

perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line.		constructions listed above using string, reflective devices, paper folding, and/or dynamic geometric software.		equilateral triangle, square, regular hexagon, inscribe, circle
G.CO.13 Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle.	Construct polygons inscribed in circles.	 I can define inscribed polygons (the vertices of the figure must be points on the circle). I can construct an equilateral triangle inscribed in a circle. I can construct a square inscribed in a circle. I can construct a hexagon inscribed in a circle. I can explain the steps to constructing an equilateral triangle, a square, and a regular hexagon inscribed in a circle. 	Pg.559 in Chapter 10	
Trigonometry				
 G.SRT.1 Verify experimentally the properties of dilations given by a center and a scale factor. a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center 	Identify a dilation given by its center and scale factor.	 I can define a dilation. I can perform a dilation with a given center and scale factor on a figure in the coordinate plane. I can verify that when a side passes through the center of dilation, the side and its image lie on the same line. 	9-5 a little but not really there	Dilation, center, scale factor, image, slope, parallel, corresponding sides, preimage, distance, segment, ratio, similarity, composition, rigid motion, dilation, angle measure,

 b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. G.SRT.2 Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G.SRT.3 Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. 	Use the definition of similarity with transformations to decide if two figures are similar. Explain using transformations that the meaning of similarity of triangles is the equality of corresponding pairs of angles and the proportionality of all corresponding sides. Use the properties of similarity transformations to establish AA for similarity to prove two triangles are similar.	 I can verify that a side length of the image is equal to the scale factor multiplied by the corresponding side length of the preimage. I can define similarity as a composition of rigid motions followed by dilations in which angle measure is preserved and side length is proportional. I can identify corresponding sides and corresponding angles of similar triangles. I can demonstrate that in a pair of similar triangles, corresponding angles are congruent (angle measure is preserved) and corresponding sides are proportional. I can determine that two figures are similar by verifying that angle measure is preserved and corresponding sides are proportional. I can show and explain that when two angle measures are known (AA), the third angle measure is also known (Third Angle Theorem). I can conclude and explain that AA similarity is a sufficient condition for two triangles to be similar. 	9-5, Not in 9-5 or6- 3 Not in book		proportion, corresponding angles, similarity transformation, angle measure,
---	---	--	---	--	---

 G.SRT.4 Prove theorems about triangles. <i>Theorems include: a line parallel to one side of a triangle divides the other two proportionally, and conversely; the Pythagorean Theorem proved using triangle similarity.</i> G.SRT.5 Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. 	 Prove that a line parallel to one side of a triangle divides the other two sides proportionally. Prove that two triangles are similar by using the Pythagorean Theorem. Use similarity criteria for triangles to solve problems. 	I can use theorems, postulates, or definitions to prove theorems about triangles, including: a. A line parallel to one side of a triangle divides the other two proportionally; b. If a line divides two sides of a triangle proportionally, then it is parallel to the third side; c. The Pythagorean Theorem proved using triangle similarity. I can use triangle congruence and triangle similarity to slove problems (e.g., indirect measure, missing sides/angle measures, side splitting). I can use triangle congruence and triangle similarity to prove	6-4, 7-2 12-5, 8-1, 6-2, 6-3	Proof, corresponding angles, similarity, segment addition, parallel, intersect, Pythagorean Theorem, congruence, side length, angle measure, proportional, corresponding sides, triangle congruence, triangle similarity
G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.	Find the point on a directed line segment that partitions the given segment into a given ratio. Use the ratios of side lengths of right triangles to find properties of the angles in the triangle. Define the sine and cosine ratio for acute angles of right triangles.	I can demonstrate that within a right triangle, line segments parallel to a leg create similar triangles by AA similarity. I can use the characteristics of similar figures to justify the trigonometric ratios. I can define the following trig. ratios for acute angles in a right triangle.	7-3, 7-4,	Similarity, rigid motion, dilation, angle measure, proportional, right triangle, line segment, parallel, leg hypotenuse, AA similarity, corresponding sides, tangent sine, cosine, acute angle,

		I can use division and the Pythagorean		ratio,
		Theorem to prove that sinA squared		trigonometry,
G SRT 7 Explain and use the		+cosA squared =1.	Not in	constant,
relationship between the sine	Explain that sinA is equal to cosB in the		hook	complementary
and cosine of complementary	same right triangle. Therefore,		DOOK	angles, acute angle,
angles	<a +="" <b="90" and="" are<="" degrees="" td=""><td></td><td></td><td>sine ratio, cosine</td>			sine ratio, cosine
ungics.	complementary angles.	I can define complementary angles.	7-2,	ratio, right triangle,
		. , , ,	7-4	tangent ratio,
		I can calculate sine and cosine ratios		inverse trig. Ratio,
		for acute angles in a right triangle		Pythagorean
		when given two side lengths.		theorem, side,
				angle, triangle
		I can use a diagram of a right triangle		
		to explain that for a pair of		
		complementary angles A and B, the		
		sine of angle A is equal to the cosine of		
		angle B and the cosine of angle A is		
		equal to the sine of angle B.		
		I can use angle measures to estimate		
		side lengths (in triangles for example)		
		I can use side lengths to estimate		
		angle measures.		
		I can solve right triangles by finding		
		the measures of all sides and angles in		
		the triangles. I can use sine, cosine,		
G.SRT.8 Use trigonometric		tangent, and their inverses to solve for		
ratios and the Pythagorean	I CAN use the sine, cosine, and tangent	the unknown side lengths and angle		
Theorem to solve right	ratio to solve applied problems involving	measures of a right triangle.		
triangles in applied problems. \star	right triangles.	Lean use Duthagerean theorem to		
	I CAN use the Buthagoroan Theorem to	solve for an unknown side length of a		
	solve applied problems involving right	solve for an unknown side length of a		
	solve applied problems involving light	right thangle.		

	triangles.	I can draw right triangles that describe real world problems and label the sides and angles with their given measures. I can solve application problems involving right triangles, including angle of elevation and depression, navigation, and surveying.		
G.MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).*	Apply density in area and volume situations. Find the surface area of a prism or cylinder. Find the surface area of pyramids and cones.	I can represent real-world objects as geometric figures. I can estimate measures (circumference, area, perimeter, volume) of real-world objects using comparable geometric shapes or three-dimensional figures. I can apply the properties of geometric figures to comparable real –world	11-1,11- 2 11-3,12- 3 12-4,12- 5	Circumference, area, perimeter, volume, unit of measure, convert, density, composite figures, geometric model, graph, equation, table formula
G.MG.2 Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).* G.MG.3 Apply geometric	Give an informal argument about the formula for the volume of a sphere.	objects. (spokes are like radius) I can decide whether it is best to calculate or estimate the area or volume of a geometric figure and perform the calculation or estimation. I can break composite geometric	12-6,12- 7 11-1,11- 2 11-3,12- 3	
methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems	Analyze what multiplying one or more of the dimensions of a figure does, and how it affects its attributes.	figures into manageable pieces. I can convert units of measure (e.g., convert square feet to square miles). I can apply area and volume to	12-4,12- 5 12-6,12- 7	

based on ratios).*		situations involving density. I can create a visual representation of a design problem. I can solve design problems using a geometric model(graph, equation, table, formula). I can interpret the results and make conclusions based on the geometric model.	6-3	
G.SRT.9 (+) Derive the formula A = 1/2 ab sin(C) for the area of a triangle by drawing an auxiliary line from a vertex perpendicular to the opposite side. G.SRT.10 (+) Prove the Laws of Sines and Cosines and use	Prove the formula for finding area using the ratio for sine. I can use the Law of Sines to solve problems.	 I can understand that two right triangles are created when an altitude is drawn from a vertex. I can find the length of a triangle's altitude by using the sine function. I can use the traditional area formula of a triangle A=1/2xBasexHeight and the sine function to generate an equivalent are formula A=½ x a x b x SinC. I can calculate the area of a triangle area formula of a triangle the formula of a triangle the formula A=1/2 x a x b x SinC. 	Not there 7-6, 7-7 7-6, 7-7	Vertex, perpendicular, sine ratio, altitude, law of sines, right triangle, side, Pythagorean theorem, law of cosines, ASA, AAS, SSA,SAS, SSS, triangle inequality,
them to solve problems.	Use the Law of Cosines to solve problems.	 using the formula A=1/2 x a x b x SinC, using any angle of the triangle . I can derive the law of sines by drawing an altitude in a triangle, using the sine function to find two expressions for the length of the 		

	altitude, and simplifying the equation		
	that results from setting these		
	expressions equal		
	sinA/a=sinB/b=sinC/c		
	I can use the law of sines to solve real		
	world problems.		
	I can draw an altitude to create two		
	right triangles and can establish the		
	relationships of the sides in each right		
	triangle using the sine and cosine		
	functions of a single angle in the		
	original trianglo		
	I can derive the law of cosines using		
	the Pythagorean theorem two right		
	triangles formed by drawing an		
	altitude, and substitution		
	I can generalize the law of cosines to		
	apply to each included angle		
	I can use the law of cosines to solve		
	real world problems.		
	I can use the triangle inequality and		
	side/angle relationships to estimate		
	the measures of unknown sides and		
	angles.		
	I can distinguish between situations		
	that require the law of sines		
	(ASA,AAS,SSA) and situations that		
G.SRT.11 (+) Understand and	require the law of cosines (SAS, SSS).		
() =			

apply the Law of Sines and the Law of Cosines to find unknown measurements in right and non-right triangles (e.g., surveying problems, resultant forces).		 I can apply the law of sines to find unknown side lengths and unknown angle measures in right and non- adjacent angle measue(SSA). Make two triangles, one triangle, or no triangle. I can apply the law of cosines to find unknown side lengths and unknown angle measures in right and non-right triangles. I can represent real world problems with diagrams of right and non-right triangles and use them to solve for unknown side lengths and angle measures. 		
Unit 3: Extending to Three Dimensions				
 G.GMD.1 & 2 Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. G.GMD.3 Use volume formulas for cylinders, pyramids, cones, 	Give an informal argument about the formula for the volume of a cylinder. Give an informal argument about the formula for the volume of a pyramid. Give an informal argument about the formula for the volume of a cone. Give an informal argument about the formula for the volume of a sphere.	 I can define pi as the ratio of a circle's circumference to its diameter. I can use algebra to demonstrate that because pi is the ratio of a circle's circumference to its diameter that the formula for a circle's circumference must be C=pi x D. I can inscribe a regular polygon in a circle and break it into many congruent triangles to find its area. I can explain how to use the dissection 	Better covered in on core mathem atics book but easily done	Pi, circle, circumference, diameter, dissection, equivalent, ratio, area, regular, polygon, perimeter, side, apothem, radius, base, prism, cylinder, pyramid, cone, volume, substitute, height

and spheres to solve problems.★	Analyze what multiplying one or more of the dimensions of a figure does, and how it affects its attributes.	method on regular polygons to generate an area formula for regular polygons A=1/2 apothem x perimeter. I can calculate the area of a regular polygon A=1/2 x apothem x perimeter.	with corresp onding sections	
		I can use pictures to explain that a regular polygon with many sides is nearly a circle, its perimeter is nearly the circumference of a circle, and that its apothem is nearly the radius of a circle. I can substitute the "nearly" values of a many sided regular polygon into A=1/2 x apothem x perimeter to show that the formula for the area of a circle is A=pi x radius squared. I can identify the base for prisms, cylinders, pyramids, and cones. I can calculate the area of the base for prisms, cylinders, pyramids, and cones. I can calculate the volume of a prism using the formula V=B x H and the volume of a cylinder V=pi x radius squared x H. I can defend the statement, "The formula for the volume of a cylinder is basically the same as the formula for the volume of a prism."	12-2,12- 3 12-4,12- 5 12-6,12- 7	

	-	-		-	
		I can explain that the volue of a			
		pyramid is 1/3 the volume of a prism			
		with the same base area and height			
		and that the volume of a cone is1/3			
		the volume of a cylinder with same			
		base area and height.			
		I can defend the statement,"The			
		formula for the volume of a cone is			
		basically the same as the formula for			
		the volume of a pyramid."			
G.GMD.4 Identify the shapes	Identify the shapes of two- dimensional		12-1		
of two-dimensional cross-	cross-sections that are cut from three-				
sections of three dimensional	dimensional objects.				
objects, and identify three-					
dimensional objects generated					
by rotations of two-					
dimensional objects.					
G.MG.1 Use geometric shapes,	Apply density in area and volume				
their measures, and their	situations.				
properties to describe objects					
(e.g., modeling a tree trunk or	Apply geometry methods to solve design				
a human torso as a	problems.				
cylinder).*					
Unit 4: Connecting Algebra					
and Geometry Through					
Coordinates					
G.GPE.4 Use coordinates to	Use coordinate Geometry to prove that a	L can use coordinates to prove simple	4-7,		Coordinator
prove simple geometric	figure is a rectangle, or that a point lies in	Commetry	8-7		coordinates,
theorems algebraically. For	or on the circle.	Geometry.			rectangle, points,
example, prove or disprove					circies,
that a figure defined by four					
given points in the coordinate					
plane is a rectangle; prove or					

disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0, 2)$.	Prove that parallel lines have the same	I can find equation of lines parallel or			Parallel lines, Perpendicular
G.GPE.5 Prove the slope criteria for parallel and perpendicular lines and uses them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given	slope, and that perpendicular lines have opposite/reciprocal slopes.	perpendicular to given lines that pass through a given point.	3-3	li opj	nes, equations, slope, posite/reciprocal
point).	I know how to find the point on a directed line segment between two given points that breaks the segment in a given ratio.	I can find points on directed line segments.	Use On Core		Directed line segment, line segment, ratio
G.GPE.6 Find the point on a directed line commont			Mathe		•
between two given points that partitions the segment in a given ratio.	I know how to use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the	I can use coordinate Geometry to find the perimeter of polygons using the distance formula.	book 8- 3 1-6		Coordinate Geometry, Perimeter,
G.GPE.7 Use coordinates to	distance formula.		And in	Di	istance formula,
compute perimeters of			On Core		Area
polygons and areas of triangles e.g.			8-3		
using the distance formula. \star					
G.GPE.2 Derive the equation	Prove the equation of a parabola given a	I can find the equation of a parabola	8-2 In	Р	arabola, focus,
of a parabola given a focus	focus and directrix.	given the focus and directrix.	On Core	d	lirectrix, center
Unit 5: Circles With and			BOOK		
Without Coordinates					
G.C.1 Prove that all circles are	I know how to show similarity between	l can	Not	Sim	nilarity, Circles,
similar.	circles.		there	Ins	cribed, radius,

		5-3 in	radii, chord
		On Core	
G.C.2 Identify and describe	I know how to identify inscribed angles in	book	Central Angle,
relationships among inscribed	circles, radii and chords.		inscribed angle,
angles, radii, and chords.		10-4,	circumscribed
Include the relationship		10-5	angles, diameter,
between central, inscribed,			right angles,
and circumscribed angles;			perpendicular.
inscribed angles on a diameter			tangents, intersect
are right angles; the radius of			
a circle is perpendicular to the			
tangent where the radius			
intersects the circle.	Use permutations to compute		
	probabilities of compound events.		
G.C.3 Construct the inscribed			
and circumscribed circles of a		Not	
triangle, and prove properties		There,	
of angles for a quadrilateral		In On	
inscribed in a circle.		Core	
		Math	
G.C.4 (+) Construct a tangent		7-2, 7-4	
line from a point outside a		7-5	
given circle to the circle.			
		10-5	
G.C.5 Derive using similarity		10-2	
the fact that the length of the		used	
arc intercepted by an angle is		with On	
proportional to the radius, and		Core	
define the radian measure of		section	
the angle as the constant of		9-4	
proportionality: derive the			
formula for the area of a			
sector			
	I know how to use the Puthagorean		
G.GPE.1 Derive the equation	Theorem given the center and its radius to		
	Theorem given the center and its radius to		

of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation.	determine the equation of the circle. I know how to complete the square to find the center and radius.	10-8 used with On Core Math 8-1	
G.GPE.4 Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1, V3) lies on the circle centered at the origin and containing the point (0, 2).			
G.MG.1 Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* Unit 6: Applications of Probability			
S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and,"		Not in book. Use On Core Math 11-1	

"not").			
S CP 2 Understand that two			
events A and B are			
independent if the probability			
of A and B occurring together			
is the product of their			
probabilities, and use this			
characterization to determine			
if they are independent.			
S.CP.3 Understand the			
conditional probability of A			
given B as P(A and B)/P(B), and			
interpret independence of A			
and B as saying that the			
siven B is the same as the			
given B is the same as the			
conditional probability of P			
given A is the same as the			
probability of B			
S.CP.4 Construct and interpret			
two-way frequency tables of			
data when two categories are			
associated with each object			
being classified. Use the two-			
way table as a sample space to			
decide if events are			
independent and to			
approximate conditional			
probabilities. For example,			
collect data from a random			
sample of students in your			

school on their favorite subject			
among math, science, and			
English. Estimate the			
probability that a randomly			
selected student from your			
school will favor science given			
that the student is in tenth			
grade. Do the same for other			
subjects and compare the			
results.			
S.CP.5 Recognize and explain			
the concepts of conditional			
probability and independence			
in everyday language and			
everyday situations. For			
example, compare the chance			
of having lung cancer if you			
are a smoker with the chance			
of being a smoker if you have			
lung cancer.			
S.CP.6 Find the conditional			
probability of A given B as the			
fraction of B's outcomes that			
also belong to A, and interpret			
the answer in terms of the			
model.			
C CD 7 Apply the Addition			
S.CP.7 Apply the Addition			
Rule, $P(A \text{ or } B) = P(A) + P(B) -$			
P(A and B), and interpret the			
answer in terms of the model.			
S.Cr.8 (+) Apply the general			
williplication kule in a			
uniform probability model,			

P(A and B) = P(A)P(B A) =			
P(B)P(A B), and interpret the			
answer in terms of the model.			
S.CP.9 (+) Use permutations			
and combinations to compute			
probabilities of compound			
events and solve problems.			
S.MD.6 (+) Use probabilities to			
make fair decisions (e.g.,			
drawing by lots, using a			
random number generator).			
S.MD.7 (+) Analyze decisions			
and strategies using			
probability concepts (e.g.,			
product testing, medical			
testing, pulling a hockey goalie			
at the end of a game).			