Timeline	Cur. Standards & Benchmarks-Essential Questions	Learning Targets (M1,M2,M3,M4)	Vocabulary	Assessment
September	P.PM.M.1 Chemical Properties- Matter has chemical properties. The understanding of chemical properties helps to explain how new substances are formed. P.PM.07.11 Classify substances by their chemical properties (flammability, pH, and reactivity)		Flammability pH reactivity acid/base Reactants Products Variables Scientific Method	Labs Reports Test Quiz Written Work Foldables
September / October	P.PM.M.2 Elements and Compounds- Elements are composed of a single kind of atom that are grouped into families with similar properties on the periodic table. Compounds are composed of two or more different elements. Each element and compound has a unique set of physical and chemical properties such as boiling point, density, color. conductivity.		Element, Compound boiling point density color conductivity reactivity phase change state of matter Density Mass Volume Metric Units (kilo, meter, etc.)-Mixture Atom Molecule Solution	Lab report Test Quiz Written Work Foldables

	and reportivity	Eamilia	
	and reactivity.	Failines	
		Groups	
	P.PM.07.21 Identify the	Periodic	
	smallest component that	table	
	makes up an	Metal	
	element.	nonmetsl	
	P.PM.07.22 Describe		
	how the elements within		
	the Periodic Table are		
	organized by similar		
	properties into families		
	(highly reactive metals,		
	less reactive metals,		
	highly reactive		
	nonmetals, and some		
	almost completely		
	non-reactive gases).		
	P.PM.07.23 Illustrate		
	the structure of		
	molecules using models		
	or		
	drawings (water carbon		
	dioxide_table_salt) *		
	P PM 07 24 Describe		
	examples of physical		
	and chemical properties		
	of alamants and		
	compounds		
	compounds		
	PCMM2 Chamical	Chamical	Lab report
	Changes Chemical	chemea	Lab report
	changes occur	Dhysical	-
November/	when two elements	Physical	lest
December	when two elements	change	
	and/or compounds	Conservation	Quiz
	react (including	of mass and	
		matter	

decomposing) to Equation	Written
Liquiton	
produce new Balanced	Work
substances. These new equation	
substances have Product	Science
different physical and Reactant	lournal
chemical properties	Joanna
than the original	
elements and/or	
compounds. During	
the	
chemical change, the	
number and kind of	
atoms in the reactants	
are the same as the	
number and kind of	
atoms in the products.	
Mass is conserved	
during chemical	
changes.	
The mass of the	
reactants is the same	
as the mass of the	
products. *	
P.CM.07.21 Identify	
evidence of chemical	
change through color,	
gas formation, solid	
formation, and	
temperature	
change.	
P.CM.07.22 Compare	
and contrast the	
chemical properties of a	
new substance with the	
original after a chemical	

report
t
7
-
tton
rle
ſĸ
ероок
rt z t'rl

December	P.EN.M.4 Energy	Radiation	Lab report
/January	Transfer- Energy is	Conduction	
-	transferred from a	Convection	Test
	source to a receiver by	Conservation	
	radiation, conduction,	of energy	Ouiz
	and		~ ~~
	convection. When		W/ritton
	energy is transferred		Work
	from one		VVOIK
	system to another, the		
	quantity of energy		Notebook
	before the		
	transfer is equal to the		
	quantity of energy after		
	the		
	transfer. *		
	P.EN.06.41 Explain		
	how different forms of		
	energy can be		
	transferred from one		
	place to another by		
	radiation,		
	conduction, or		
	convection.		
	P.EN.06.42 Illustrate		
	how energy can be		
	transferred while no		
	energy is lost or gained		
	in the transfer		

	P.EN.M.1 Kinetic and	k	Kinetic	Lab report
	Potential Energy-	E	Energy	
	Objects and	F	Potential	Test
	substances in motion	e	energy	
	have kinetic energy.		Gravitational	Ouiz
	Objects and	F	PE	Quiz
	substances may have		Chemical PE	Writton
	potential energy due to			Work
	their relative			VVOLK
	positions in a system.			
	Gravitational, elastic,			Notebook
	and chemical			
	energy are all forms of			
	potential energy.			
December/	P.EN.06.11 Identify			
January	kinetic or potential			
	energy in everyday			
	situations (for example:			
	stretched rubber band,			
	objects in motion, ball			
	on a hill, food energy).			
	P.EN.06.12			
	Demonstrate the			
	transformation between			
	potential			
	and kinetic energy in			
	simple mechanical			
	systems (for			
	example: roller coasters,			
	pendulums).			
	P.EN.M.4 Energy	F	Photosynthes	Lab report
	Transfer- Energy is	i	is	-
- Fobuon/	transferred from a			Test
Febuary	source to a receiver by			
	radiation, conduction,			Ouiz
	and			~~

	convection. When energy is transferred from one system to another, the quantity of energy before the transfer is equal to the quantity of energy after the transfer. * P.EN.07.43 Explain how light energy is transferred to chemical energy through the process of photosynthesis.		Written Work Poster
February	L.HE.M.2 Reproduction- Reproduction is a characteristic of all living systems; because no individual organism lives forever, reproduction is essential to the continuation of every species. Some organisms reproduce asexually. Other organisms reproduce sexually. L.HE.07.21 Compare how characteristics of living things are	Reproduction Sexual Asexual Chromosome s Nucleic acid DNA RNA Heredity	Lab report Test Quiz Written Work Inquiry Lab

	passed on through generations, both asexually and sexually. L.HE.07.22 Compare and contrast the advantages and disadvantages of sexual vs. asexual reproduction.		
March	L.OL.M.3- Growth and Development- Following fertilization, cell division produces a small cluster of cells that then differentiate by appearance and function to form the basic tissue of multicellular organisms.* L.OL.07.31 Describe growth and development in terms of increase of cell number and/or cell size. L.OL.07.32 Examine how through cell division, cells can become specialized for specific functions	Cell division Differentiatio n Stem cell Fertilization Specializatio n	Lab report Test Quiz Written Work
March	L.OL.M.6 Photosynthesis- Plants	Photosynthes is	Lab report

are producers; they	Carbohydrate	
use	S	Test
the energy from light	Protein	
to make sugar	Fats	Ouiz
molecules from the	Glucose	
atoms of carbon	Carbon	Writton
dioxide and water.	dioxide	Work
Plants use these	Cell	VVOIK
sugars along with	respiration	
minerals from the soil	Nutrients	Inquiry Lab
to form fats,		
proteins, and		Project
carbohydrates. These		
products can be used		
immediately.		
incorporated into the		
cells of a plant as the		
plant grows, or stored		
for later use.		
L.OL.07.61 Recognize		
the need for light to		
provide energy for the		
production of		
carbohydrates, proteins		
and fats.		
L.OL.07.62 Explain that		
carbon dioxide and		
water are used to		
produce carbohydrates.		
proteins, and fats.		
L.OL.07.63 Describe		
evidence that plants		
make, use and store		
food		

	E.ES.M.8 Water	evaporation	Lab report
	Cycle- Water	transpiration	
	circulates through the	condensation	Test
	four spheres	cloud	
	of the Earth in what is	formation	Quiz
	known as the "water	precipitation	
	cycle."	infiltration	Written
		surface	Work
	E.ES.07.81 Explain the	runoff	VVOIN
	water cycle and describe	ground water	During
	how evaporation,	water shed	Project
	transpiration,		
	condensation, cloud		
April	formation,		
Арп	precipitation,		
	infiltration, surface		
	runoff, ground water,		
	and absorption occur		
	within the cycle.		
	E.ES.07.82 Analyze the		
	flow of water between		
	the components		
	of a watershed,		
	including surface		
	features (lakes,		
	streams, rivers,		
	wetlands) and		
	groundwater.		
	E.ES.M.1 Solar	Energy	Lab report
	Energy- The sun is the	Water cycle	
April	major source of	Atmosphere	Test
	energy for phenomena	Evaporation	
	on the surface of the	Condensatio	Quiz
	Earth.	n	
		Sublimation	
		Convection	

		Г		
	E.ES.07.11		Currents	Written
	Demonstrate, using a			Work
	model or drawing, the			
	relationship between the			
	warming by the sun of			
	the			
	Earth and the water			
	cycle as it applies to the			
	atmosphere			
	(evaporation, water			
	vapor, warm air			
	rising, cooling,			
	condensation, clouds).			
	E.ES.07.12 Describe the			
	relationship between the			
	warming of the			
	atmosphere of the Earth			
	by the sun and			
	convection			
	within the atmosphere			
	and oceans.			
	E.ES.07.13 Describe			
	how the warming of the			
	Earth by the sun			
	produces winds and			
	ocean currents.			
	E.ES.M.7 Weather and		Climate	Lab report
	Climate- Global		Weather	
	patterns of		Frontal	Test
April	atmospheric and		boundaries	
	oceanic movement		Cold front	Quiz
	influence weather and		Warm front	
	climate.		Occluded	Writton
	E.ES.07.71 Compare		front	Work
	and contrast the		Jet stream	WUIK
			Air masses	

	difference and	Ocean	
	relationship	currents	
	between climate and		
	weather.		
	E.ES.07.72 Describe		
	how different weather		
	occurs due to the		
	constant motion of the		
	atmosphere from the		
	energy		
	of the sun reaching the		
	surface of the Earth.		
	E.ES.07.73 Explain how		
	the temperature of the		
	oceans affect the		
	different climates on		
	Earth because water in		
	the		
	oceans holds a large		
	amount of heat.		
	E.ES.07.74 Describe		
	weather conditions		
	associated with frontal		
	boundaries (cold, warm,		
	stationary, and		
	occluded) and		
	the movement of major		
	air masses and the jet		
	E.ES.M.4 Human	Pollution	Lab report
	Consequences- Human	surface	
	activities have	mining	Test
Мау	changed the land,	deforestation	
	oceans, and	overpopulati	Quiz
	atmosphere of the	on	-
	Earth	construction	
		urban	

rocu	ulting in the	development	Writton
rodu	notion of the	geosphere	Work
Teur	uction of the	budroanhara	WORK
11u11	ilder and variety of	nyurosphere	
Wild	1 . 4		Project
piar	its and animals,	natural	
som	etimes causing	resources	
exti	nction of species.	climatic	
		change	
E.E	S.07.41 Explain how	habitats	
hum	nan activities	industrial	
(sur	face mining,	emissions	
defo	prestation,		
over	rpopulation,		
cons	struction and urban		
deve	elopment, farming,		
dam	ns, landfills, and		
resto	oring		
natu	ral areas) change the		
surf	ace of the Earth and		
affe	ct the survival of		
orga	anisms.		
E.E	S.07.42 Describe the		
orig	ins of pollution in		
the a	atmosphere,		
geos	sphere, and		
hydi	rosphere, (car		
exha	aust, industrial		
emis	ssions, acid rain, and		
natu	ral sources), and		
how	7		
poll	ution impacts		
habi	itats, climatic		
char	nge, threatens		
or en	ndangers species.		

		1	
	E.FE.M.1 Atmosphere-		Lab report
	The atmosphere is a		
	mixture of		Test
	nitrogen, oxygen, and		
	trace gases that include		Quiz
	water vapor.		
	The atmosphere has		Writton
	different physical and		Willen
	chemical		WORK
	composition at		
May	different elevations.		
	E.FE.07.11 Describe the		
	atmosphere as a mixture		
	of gases.		
	E.FE.07.12 Compare		
	and contrast the		
	composition of the		
	atmosphere at different		
	elevations.		
	S.IP.M.1 Inquiry	Variable	Lab report
	involves generating	Constant	
	questions, conducting	Scientific	Tost
	investigations, and	method	1030
	developing solutions to	Hypothesis	Oui-
All year	problems through	Theory	Quiz
	reasoning and	Conclusion	
	observation.	Metric	Written
		system	Work
	S.IP.07.11 Generate	Best fit line	
	scientific questions		
	based on observations,		
	investigations, and		
	research.		

	S.IP.07.12 Design and		
	conduct scientific		
	investigations.		
	S.IP.07.13 Use tools		
	and equipment		
	appropriate to		
	scientific investigations.		
	S.IP.07.14 Use metric		
	measurement devices in		
	an investigation.		
	S.IP.07.15 Construct		
	charts and graphs from		
	data and observations.		
	S.IP.07.16 Identify		
	patterns in data.		
	S.IA.M.1 Inquiry		Lab report
	includes an analysis		
	and presentation of		Test
	findings		
	that lead to future		Quiz
	questions, research,		
	and investigations.		Written
			Work
	S.IA.07.11 Analyze		WORK
All Year	information from data		Droject
	tables and graphs to		Project
	answer		
	scientific questions.		
	S.IA.07.12 Evaluate		
	data, claims, and		
	personal knowledge		
	through		
	collaborative science		
	discourse.		

	S.IA.17.13	
	Communicate and	
	defend findings of	
	observations and	
	investigations.	
	S.IA.07.14 Draw	
	conclusions from sets of	
	data from multiple trials	
	of scientific	
	investigation to draw	
	conclusions.	
	S.IA.07.15 Use multiple	
	sources of information	
	to evaluate strengths and	
	weaknesses of claims,	
	arguments, or data.	
	S.RS.M.1 Reflecting on	Lab report
	knowledge is the	
	application of scientific	Test
	knowledge to new and	
	different situations.	Quiz
	Reflecting on	
	knowledge	Written
	requires careful	Work
	analysis of evidence	WORK
All Year	that guides decision-	
	making	
	and the application of	
	science throughout	
	history and within	
	society.	
	S.RS.07.11 Evaluate the	
	strengths and	
	weaknesses of claims,	
	arguments, and data.	

S.RS.07.12 Describe		
limitations in personal		
and scientific		
knowledge.		
S.RS.07.13 Identify the		
need for evidence in		
making scientific		
decisions.		
S.RS.07.14 Evaluate		
scientific explanations		
based on current		
evidence and scientific		
principles.		
S.RS.07.15 Demonstrate		
scientific concepts		
through various		
illustrations,		
performances, models,		
exhibits, and		
activities.		
S.RS.07.16 Design		
solutions to problems		
using technology.		
S.RS.07.17 Describe the		
effect humans and other		
organisms have on the		
balance of the natural		
world.		
S.RS.07.18 Describe		
what science and		
technology can and		
cannot reasonably		
contribute to society.		
S.KS.07.19 Describe		
how science and		
technology have		

advanced because of the		
contributions of many		
people		
throughout history and		
across cultures		