Mendon High School Science Curriculum Map <u>Chemistry</u>

Time Frame: September – January Unit 1: Structure and Properties of Matter

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Students who demonstrate	PS1.A: Structure and		Before:	Absorbance spectrum
understanding can:	Properties of Matter		KWL – Students will list	Actual mass
	Each atom has a charged	How can one explain the	what they know and what	Atomic bonding principles
HS-PS1-1 Use the periodic table	substructure consisting of	structure, properties, and	they want to know about	Atomic mass
as a model to predict the relative	a nucleus, which is made	interactions of matter?	atoms. This will be	Atomic motion
properties of elements based on	of protons and neutrons,		repeated with each	Atomic nucleus
the patterns of electrons in the	surrounded by electrons.	What is the most useful	concept throughout the	Atomic number
outermost energy level of	(HS-PS1-1)	type of information	unit. (periodic table,	Atomic theory
atoms. [Clarification Statement:		obtained by the	fusion, decay, etc)	Atomic weight
Examples of properties that	The periodic table orders	organization of the		Avogadro's hypothesis
could be predicted from patterns	elements horizontally by	periodic table?	Quick Writes – Before	Avogadro's number
could include reactivity of	the number of protons in		each lesson students will	Binary
metals, types of bonds formed,	the atom's nucleus and		be asked to write their	Binary compound
numbers of bonds formed, and	places those with similar		thoughts and questions	Bond energy
reactions with oxygen.]	chemical properties in		for the day pertaining to	Bright line spectrum
[Assessment Boundary:	columns. The repeating		the objectives.	Carbon atom
Assessment is limited to main	patterns of this table			Carbon atom
group elements. Assessment does	reflect patterns of outer		Pretest – Students will be	Carbon dioxide
not include quantitative	electron states. (HS-PS1-		given an assessment to	Charged object
understanding of ionization	1)		understand their	Chemical bond
energy beyond relative trends.]			knowledge on the unit	Chemical properties of elements
	The structure and		before instruction is	Covalent bond
HS-PS1-3 Plan and conduct an	interactions of matter at		given.	Crystalline solid
investigation to gather	the bulk scale are	How is energy related to		Decay rate
evidence to compare the	determined by electrical	fusion, fission and		Double bond
structure of substances at the	forces within and between	radioactive decay?	During:	Earth's elements
bulk scale to infer the strength of	atoms. (HS-PS1-		Think/Pair/Share –	Electric force
electrical forces between	3),(secondary to HS-PS2-		Students will work in	Electrical conductivity
particles. [Clarification	6)		pairs to practice and	Electrically neutral
Statement: Emphasis is on			reinforce rules as they are	Electromagnetic field
understanding the strengths of	PS1.C: Nuclear		introduced.	Electromagnetic radiation
forces between particles, not on	Processes			Electromagnetic spectra

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
naming specific intermolecular	Nuclear processes,	How do the properties of	Conferences – Check for	Electromagnetic wave
forces (such as dipole-dipole).	including fusion, fission,	the atomic particles affect	understanding by meeting	Electron
Examples of particles could	and radioactive decays of	the interactions of those	with students during work	Electron cloud
include ions, atoms, molecules,	unstable nuclei, involve	atoms?	time.	Electron configuration
and networked materials (such as	release or absorption of			Electron sharing
graphite). Examples of bulk	energy. The total number		Lab Investigations –	Electron transfer
properties of substances could	of neutrons plus protons		Students will be	Electro-negativity
include the melting point and	does not change in any		responsible for	Element family
boiling point, vapor pressure,	nuclear process. (HS-PS1-		developing and	Elementary particle
and surface tension.]	8)		implementing one or	Elements of matter
[Assessment Boundary:	,		more lab investigation(s)	Emission spectra
Assessment does not include	PS2.B: Types of		exploring the periodic	Empirical formula
Raoult's law calculations of	Interactions Attraction		table, nuclear processes,	Endothermic process
vapor pressure.]	and repulsion between		and properties of	Energy level
	electric charges at the		elements.	Energy sublevels
HS-PS1-8 Develop models to	atomic scale explain the			Enthalpy
illustrate the changes in the	structure, properties, and			Excited state
composition of the nucleus of the	transformations of matter,		After:	Exothermic process
atom and the energy release	as well as the contact		Posttest: Students will be	Fossil fuel
during the processes of fission,	forces between		given a test after the unit	Ground state
fusion, and radioactive			has been completed and	Hydrocarbons
decay. [Clarification Statement:			the Presentations have	Intermolecular force
Emphasis is on simple			been given.	Ion
qualitative models, such as			6	Ionic bond
pictures or diagrams, and on the			Project: Students will	Ionization energy
scale of energy released in			create a presentation	Isomers
nuclear processes relative to			using multi-media (as a	Isotope
other kinds of transformations.]			group) of this unit. This	Kernel
[Assessment Boundary:			will include various	Lewis structures
Assessment does not include			concepts, experimental	Main energy level
quantitative calculation of			data, vocabulary, and	Main group elements
energy released. Assessment is			applications in the "real	Metallic bond
limited to alpha, beta, and			world" and will focus on	Metalloids
gamma radioactive decays.]			predictions of an	Mole
[]			imaginary element.	Molecular formula
HS-PS2-6 Communicate			Assessed by teacher	Monomer
scientific and technical			created rubric.	Moving electric charge
information about why the			· · · · · · · · · · · · · · · · · · ·	Neutron mass to energy conversion

 information about why the

 *Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
molecular-level structure is				Nuclear reaction
important in the functioning of				Orbital shape
designed materials.				Orbitals
[Clarification Statement:				Organic matter
Emphasis is on the attractive and				Outer electron
repulsive forces that determine				Periodic table of the elements
the functioning of the material.				Polarity
Examples could include why				Potential energy
electrically conductive materials				Probability
are often made of metal, flexible				Protein
but durable materials are made				Proton
up of long chained molecules,				Quantum energy
and pharmaceuticals are				Quantum numbers
designed to interact with specific				Radioactive dating
receptors.] [Assessment				Radioactive decay
Boundary: Assessment is limited				Radioactive isotope
to provided molecular structures				Relative mass
of specific designed materials.]				Release of energy
				Single bond
HS-ETS1-2 Design a solution to				Stable
a complex real-world problem by				Strong force
breaking it down into smaller,				Sublevel
more manageable problems that				Synthetic polymer
can be solved through				Thermal conductivity
engineering.				Transforming matter and/or energy
				Valence electrons
				Wave amplitude
				Wavelength
				Weight of subatomic particles

Mendon High School Curriculum Map <u>Chemistry</u>

Time Frame: January – April Unit 2: Chemical Reactions

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Students who demonstrate	PS1.A: Structure and		Before:	Acid rain
understanding can:	Properties of Matter		KWL – Students will list	Acid/base reaction
	The periodic table orders	How can one explain the	what they know and	Acidic
HS-PS1-2 Construct and revise	elements horizontally by	structure, properties, and	what they want to know	Alkaline
an explanation for the outcome of	the number of protons in	interactions of matter?	about atoms. This will	Atomic weight
a simple chemical reaction based	the atom's nucleus and		be repeated with each	Basic
on the outermost electron states	places those with similar	How can one explain and	concept throughout the	Boiling point
of atoms, trends in the periodic	chemical properties in	predict interactions	unit. (periodic table,	Bronsted-lowry
table, and knowledge of the	columns. The repeating	between objects and	fusion, decay, etc)	Carboxyl group
patterns of chemical	patterns of this table	within systems of		Chemical bond
properties. [Clarification	reflect patterns of outer	objects?	Quick Writes – Before	Delta (meaning change)
Statement: Examples of chemical	electron states. (HS-PS1-		each lesson students will	Dipole-dipole bond
reactions could include the	2) (Note: This		be asked to write their	Dispersion forces
reaction of sodium and chlorine,	Disciplinary Core Idea is		thoughts and questions	Endothermic process
of carbon and oxygen, or of	also addressed by HS-		for the day pertaining to	Endothermic reaction
carbon and hydrogen.]	PS1-1.)		the objectives.	Exothermic process
[Assessment Boundary:				Exothermic reaction
Assessment is limited to chemical	A stable molecule has less		Pretest – Students will	Hydrogen bonding
reactions involving main group	energy than the same set		be given an assessment	Hydrogen ion
elements and combustion	of atoms separated; one		to understand their	Hydronium ion
reactions.]	must provide at least this		knowledge on the unit	Hydroxide
	energy in order to take the		before instruction is	Ion
HS-PS1-4 Develop a model to	molecule apart. (HS-PS1-		given.	Ionic solid (crystal)
illustrate that the release or	4)	How can you determine if		Kw
absorption of energy from a		a chemical reaction will		Limiting reagent
chemical reaction system	PS1.B: Chemical	occur?	During:	Melting point
depends upon the changes in total	Reactions Chemical		Think/Pair/Share –	Metal
bond energy. [Clarification	processes, their rates, and		Students will work in	Molar volume
Statement: Emphasis is on the	whether or not energy is		pairs to practice and	Network solid
idea that a chemical reaction is a	stored or released can be		reinforce rules as they	Neutral
system that affects the energy	understood in terms of the		are introduced.	Neutralize
change. Examples of models	collisions of molecules			Oxidation

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
could include molecular-level	and the rearrangements of	How can you prove that	Lab Investigations –	Ph
drawings and diagrams of	atoms into new molecules,	mass is conserved during	Students will be	Pressure
reactions, graphs showing the	with consequent changes	a chemical reaction?	responsible for	Product
relative energies of reactants and	in the sum of all bond		developing and	Properties of reactants
products, and representations	energies in the set of		implementing one or	Reactant
showing energy is conserved.]	molecules that are		more lab investigation(s)	Reagent
[Assessment Boundary:	matched by changes in		exploring the periodic	Reduction reactions
Assessment does not include	kinetic energy. (HS-PS1-		table, nuclear processes,	Relative mass
calculating the total bond energy	4),(HS-PS1-5)		and properties of	Release of energy
changes during a chemical			elements.	Temporary dipole
reaction from the bond energies	In many situations, a			
of reactants and products.]	dynamic and condition-		Daily Assignments –	
	dependent balance		Students will be given	
HS-PS1-5 Apply scientific	between a reaction and the		assignments that will	
principles and evidence to	reverse reaction		check for understanding.	
provide an explanation about the	determines the numbers of			
effects of changing the	all types of molecules		Drawings – Students	
temperature or concentration of	present. (HS-PS1-6)		will be responsible for	
the reacting particles on the rate			molecular drawing to	
at which a reaction	The fact that atoms are		show understanding.	
occurs. [Clarification Statement:	conserved, together with			
Emphasis is on student reasoning	knowledge of the			
that focuses on the number and	chemical properties of the		After:	
energy of collisions between	elements involved, can be		Posttest: Students will	
molecules.] [Assessment	used to describe and		be given a test after the	
Boundary: Assessment is limited	predict chemical		unit has been completed	
to simple reactions in which there	reactions. (HS-PS1-		and the Presentations	
are only two reactants; evidence	2),(HS-PS1-7)		have been given.	
from temperature, concentration,				
and rate data; and qualitative	ETS1.C: Optimizing the		Project: Students will	
relationships between rate and	Design Solution Criteria		create a presentation	
temperature.]	may need to be broken		using multi-media (as a	
	down into simpler ones		group) of this unit. This	
HS-PS1-6 Refine the design of a	that can be approached		will include various	
chemical system by specifying a	systematically and		concepts, experimental	
change in conditions that would	decisions about the		data, vocabulary,	
produce increased amounts of	priority of certain criteria		chemical equations and	
products at	over others (trade-offs)		applications in the "real	

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
equilibrium.* [Clarification	may be needed.		world" and will focus on	
Statement: Emphasis is on the	(secondary to HS-PS1-6)		predictions of reactions	
application of Le Chatelier's			between real and	
Principle and on refining designs			imaginary elements,	
of chemical reaction systems,			compounds, and	
including descriptions of the			mixtures. Assessed by	
connection between changes			teacher created rubric.	
made at the macroscopic level				
and what happens at the				
molecular level. Examples of				
designs could include different				
ways to increase product				
formation including adding				
reactants or removing products.]				
[Assessment Boundary:				
Assessment is limited to				
specifying the change in only one				
variable at a time. Assessment				
does not include calculating				
equilibrium constants and				
concentrations.]				
HS-PS1-7 Use mathematical				
representations to support the				
claim that atoms, and therefore				
mass, are conserved during a				
chemical reaction. [Clarification				
Statement: Emphasis is on using				
mathematical ideas to				
communicate the proportional				
relationships between masses of				
atoms in the reactants and the				
products, and the translation of				
these relationships to the				
macroscopic scale using the mole				
as the conversion from the atomic				
to the macroscopic scale.				
Emphasis is on assessing				

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
students' use of mathematical thinking and not on memorization				
and rote application of problem- solving techniques.] [Assessment				
Boundary: Assessment does not include complex chemical				
reactions.]				
HS-ETS1-1 Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for				
solutions that account for societal needs and wants.				
HS-ETS1-3 Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range				
of constraints, including cost, safety, reliability, and aesthetics as well as possible social,				
cultural, and environmental impacts.				

Mendon High School Science Curriculum Map <u>Chemistry</u>

Time Frame: April – June Unit 3: Energy

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Students who demonstrate	PS3.A: Definitions of		Before:	Activation energy
understanding can:	Energy		KWL – Students will list	Anode
	Energy is a quantitative	How is energy	what they know and what	Boiling point elevation
HS-PS3-1 Create a	property of a system that	transferred and	they want to know about	Calorie
computational model to	depends on the motion and	conserved?	atoms. This will be repeated	Cathode
calculate the change in the	interactions of matter and		with each concept throughout	Cell
energy of one component in a	radiation within that		the unit. (periodic table,	Change of state
system when the change in	system. That there is a	How do you determine if	fusion, decay, etc)	Chemical bond
energy of the other	single quantity called	a reaction will release or		Concentration
component(s) and energy	energy is due to the fact	require energy? Where	Quick Writes – Before each	Conduction
flows in and out of the system	that a system's total	does that energy come	lesson students will be asked	Convection current
are known. [Clarification	energy is conserved, even	from and/or go to?	to write their thoughts and	Convection heating
Statement: Emphasis is on	as, within the system,		questions for the day	Crystalline solid
explaining the meaning of	energy is continually		pertaining to the objectives.	Disorder
mathematical expressions	transferred from one			Electrochemical
used in the model.]	object to another and		Pretest – Students will be	Electrostatic attractions
[Assessment Boundary:	between its various		given an assessment to	Endothermic reaction
Assessment is limited to basic	possible forms. (HS-PS3-		understand their knowledge	Energy
algebraic expressions or	1), (HS-PS3-2)		on the unit before instruction	Enthalpy
computations; to systems of			is given.	Entropy
two or three components; and	At the macroscopic scale,			Equilibrium
to thermal energy, kinetic	energy manifests itself in			Exothermic reaction
energy, and/or the energies in	multiple ways, such as in		During:	Freezing point depression
gravitational, magnetic, or	motion, sound, light, and		Think/Pair/Share – Students	Gibb's free
electric fields.]	thermal energy. (HS-PS3-		will work in pairs to practice	Hess's law
	2) (HS-PS3-3)		and reinforce rules as they are	Ionic motion
HS-PS3-4 Plan and conduct			introduced.	Joules
an investigation to provide	These relationships are			Kelvin temperature
evidence that the transfer of	better understood at the		Lab Investigations – Students	Keq
thermal energy when two	microscopic scale, at		will be responsible for	Kinetic energy
components of different	which all of the different		developing and implementing	Kinetic molecular model
temperature are combined	manifestations of energy		one or more lab	Le chatelier

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
within a closed system results	can be modeled as a		investigation(s) exploring the	Mass to energy conversion
in a more uniform energy	combination of energy		periodic table, nuclear	Order
distribution among the	associated with the motion		processes, and properties of	Oxidation
components in the system	of particles and energy		elements.	Oxidation-reduction reactions
(second law of	associated with the			Potential energy
thermodynamics).	configuration (relative		Daily Assignments – Students	Pressure-temperature relationship
[Clarification Statement:	position of the particles).		will be given assignments that	Pressure-volume relationship
Emphasis is on analyzing data	In some cases the relative		will check for understanding.	Reaction rate
from student investigations	position energy can be			Reduction
and using mathematical	thought of as stored in			Release of energy
thinking to describe the	fields (which mediate		After:	Rotational motion
energy changes both	interactions between		Posttest: Students will be	Solute
quantitatively and	particles). This last		given a test after the unit has	Specific heat
conceptually. Examples of	concept includes radiation,		been completed and the	Spontaneous
investigations could include	a phenomenon in which		Presentations have been	Temperature-volume relationship
mixing liquids at different	energy stored in fields		given.	Transforming matter and/or energy
initial temperatures or adding	moves across space. (HS-			Translational motion
objects at different	PS3-2)		Project: Students will create	Vibrational motion
temperatures to water.]			a presentation using multi-	
[Assessment Boundary:	PS3.B: Conservation of		media (as a group) of this	
Assessment is limited to	Energy and Energy		unit. This will include	
investigations based on	Transfer		various concepts,	
materials and tools provided	Conservation of energy		experimental data,	
to students.]	means that the total change		vocabulary, and applications	
	of energy in any system is		in the "real world" and will	
HS-PS3-3 Design, build, and	always equal to the total		focus on all aspects of energy	
refine a device that works	energy transferred into or		transferred during a given	
within given constraints to	out of the system. (HS-		chemical reaction. Assessed	
convert one form of energy	PS3-1)		by teacher created rubric.	
into another form of energy.				
[Clarification Statement:	Energy cannot be created			
Emphasis is on both	or destroyed, but it can be			
qualitative and quantitative	transported from one place			
evaluations of devices.	to another and transferred			
Examples of devices could	between systems. (HS-			
include Rube Goldberg	PS3-1), (HS-PS3-4)			
devices, wind turbines, solar				
cells, solar ovens, and	Mathematical expressions,			

 cells, solar ovens, and
 Mathematical expressions,

 *Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
generators. Examples of	which quantify how the			
constraints could include use	stored energy in a system			
of renewable energy forms	depends on its			
and efficiency.] [Assessment	configuration (e.g. relative			
Boundary: Assessment for	positions of charged			
quantitative evaluations is	particles, compression of a			
limited to total output for a	spring) and how kinetic			
given input. Assessment is	energy depends on mass			
limited to devices constructed	and speed, allow the			
with materials provided to	concept of conservation of			
students.]	energy to be used to			
	predict and describe			
HS-LS1-5 Use a model to	system behavior. (HS-			
illustrate how photosynthesis	PS3-1)			
transforms light energy into				
stored chemical energy.	The availability of energy			
[Clarification Statement:	limits what can occur in			
Emphasis is on illustrating	any system. (HS-PS3-1)			
inputs and outputs of matter				
and the transfer and	Uncontrolled systems			
transformation of energy in	always evolve toward			
photosynthesis by plants and	more stable states—that is,			
other photosynthesizing	toward more uniform			
organisms. Examples of	energy distribution (e.g.,			
models could include	water flows downhill,			
diagrams, chemical equations,	objects hotter than their			
and conceptual models.]	surrounding environment			
[Assessment Boundary:	cool down). (HS-PS3-4)			
Assessment does not include				
specific biochemical steps.]	PS3.C: Relationship			
	Between Energy and			
HS-LS1-6 Construct and	Forces			
revise an explanation based	When two objects			
on evidence for how carbon,	interacting through a field			
hydrogen, and oxygen from	change relative position,			
sugar molecules may combine	the energy stored in the			
with other elements to form	field is changed. (HS-PS3-			
amino acids and/or other large	5)			

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
carbon-based molecules.				
[Clarification Statement:	PS3.D: Energy in			
Emphasis is on using	Chemical Processes			
evidence from models and	Although energy cannot be			
simulations to support	destroyed, it can be			
explanations.] [Assessment	converted to less useful			
Boundary: Assessment does	forms—for example, to			
not include the details of the	thermal energy in the			
specific chemical reactions or	surrounding environment.			
identification of	(HS-PS3-3),(HS-PS3-4)			
macromolecules.]	· · · · · · · · · · · · · · · · · · ·			
	ETS1.A: Defining and			
HS-LS1-7 Use a model to	Delimiting Engineering			
illustrate that cellular	Problems			
respiration is a chemical	Criteria and constraints			
process whereby the bonds of	also include satisfying any			
food molecules and oxygen	requirements set by			
molecules are broken and the	society, such as taking			
bonds in new compounds are	issues of risk mitigation			
formed resulting in a net	into account, and they			
transfer of energy.	should be quantified to the			
[Clarification Statement:	extent possible and stated			
Emphasis is on the conceptual	in such a way that one can			
understanding of the inputs	tell if a given design meets			
and outputs of the process of	them. (secondary to HS-			
cellular respiration.]	PS3-3)			
[Assessment Boundary:				
Assessment should not				
include identification of the				
steps or specific processes				
involved in cellular				
respiration.]				
HS-ESS1-1 Develop a model				
based on evidence to illustrate				
the life span of the sun and				
the role of nuclear fusion in				
the sun's core to release				
the sun s core to release				

 the sun's core to release
 *Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
energy in the form of				
radiation. [Clarification				
Statement: Emphasis is on the				
energy transfer mechanisms				
that allow energy from				
nuclear fusion in the sun's				
core to reach Earth.				
Examples of evidence for the				
model include observations of				
the masses and lifetimes of				
other stars, as well as the				
ways that the sun's radiation				
varies due to sudden solar				
flares ("space weather"), the				
11-year sunspot cycle, and				
non-cyclic variations over				
centuries.] [Assessment				
Boundary: Assessment does				
not include details of the				
atomic and sub-atomic				
processes involved with the				
sun's nuclear fusion.]				
HS-LS2-5 Develop a model				
to illustrate the role of				
photosynthesis and cellular				
respiration in the cycling of				
carbon among the biosphere,				
atmosphere, hydrosphere, and				
geosphere. [Clarification				
Statement: Examples of				
models could include				
simulations and mathematical				
models.] [Assessment				
Boundary: Assessment does				
not include the specific				
chemical steps of				
photosynthesis and				

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
respiration.]				
HS-PS4-5 Communicate				
technical information about				
how some technological				
devices use the principles of				
wave behavior and wave				
interaction with matter to				
transmit and capture				
information and energy.				
[Clarification Statement:				
Examples could include solar				
cells capturing light and				
converting it to electricity;				
medical imaging; and				
communications technology.]				
[Assessment Boundary:				
Assessments are limited to				
qualitative information.				
Assessments do not include				
band theory.]				
HS-ETS1-1 Analyze a major				
global challenge to specify				
qualitative and quantitative				
criteria and constraints for				
solutions that account for				
societal needs and wants.				
HS-ETS1-4 Use a computer				
simulation to model the				
impact of proposed solutions				
to a complex real-world				
problem with numerous				
criteria and constraints on				
interactions within and				
between systems relevant to				
the problem.				

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary