Mendon High School Science Curriculum <u>Physics</u>

Time Frame: September – December Unit 1: Motion, Force, and Interactions

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Students who demonstrate	PS2.A: Forces and Motion	How can one explain and	Before: HS-PS2-1	Acceleration due to gravity
understanding can:	Newton's second law	predict interactions between	Pretest over the Newton's laws,	Accuracy
	accurately predicts changes	objects and within systems	velocity, acceleration, and data	Agent
HS-PS2-1 Analyze data to	in the motion of	of objects?	and graph analysis	Apparent weight
support the claim that	macroscopic objects. (HS-			Average acceleration
Newton's second law of	PS2-1)	Why do physicists work in	Discussions with the students.	Average speed
motion describes the		SI units?		Average velocity
mathematical relationship	Momentum is defined for a		KWL	Centripetal acceleration
among the net force on a	particular frame of	What is the role of		Centripetal force
macroscopic object, its mass,	reference; it is the mass	uncertainty in physical	During: HS-PS2-1	Closed system
and its	times the velocity of the	measurement?	Collecting data for objects in	Coefficient of kinetic
acceleration. [Clarification	object. (HS-PS2-2)		motion can be very simple so	friction
Statement: Examples of data		What is the difference	this is a great unit to begin with	Coefficient of static friction
could include tables or	If a system interacts with	between speed and	because students get introduced	Component
graphs of position or velocity	objects outside itself, the	velocity?	to data collection and analysis	Contact force
as a function of time for	total momentum of the		while also being introduced to	Coordinate system
objects subject to a net	system can change;	How can you determine	velocity and acceleration.	Dependent variable
unbalanced force, such as a	however, any such change is	velocity from a position-	_ Depending on the difficulty of	Dimensional analysis
falling object, an object	balanced by changes in the	time graph?	the lab you may want to give	Displacement
rolling down a ramp, or a	momentum of objects		the lab before or after the	Distance
moving object being pulled	outside the system. (HS-	How can you determine	material is lectured. Quick	Drag force
by a constant force.]	PS2-2),(HS-PS2-3)	acceleration from a	assessments should be used	Equilibrant
[Assessment Boundary:	102 2),(110 102 3)	velocity-time graph?	after lectures, e.g. response	Equilibrium
Assessment is limited to one-	PS2.B: Types of		cards, daily assignments,	External force
dimensional motion and to	• •	How can a velocity-time	think/pair/share, or quick	Field force
macroscopic objects moving	Interactions Newton's law of universal	graph be created from a	writes.	Force
at non-relativistic speeds.]		position-time graph?	– Conduct an experiment that	Free fall
	gravitation and Coulomb's		collects data of an object with	Free-body diagram
HS-PS2-2 Use mathematical	law provide the	How does force affect the	a constant velocity.	Gravitational force
representations to support the	mathematical models to	motion of an object and	- Conduct an experiment that	Gravitational mass
claim that the total	describe and predict the	how can the same	collects data of an object with	Gravity
momentum of a system of	effects of gravitational and	magnitude of force cause a	a constant acceleration.	Hypothesis

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
objects is conserved when	electrostatic forces between	great change in motion?	_ Conduct an experiment that	Impulse
there is no net force on the	distant objects. (HS-PS2-4)		collects data of an object with	Impulse-momentum theorem
system. [Clarification		How do Newton's laws	a constant force and mass as	Independent variable
Statement: Emphasis is on	Forces at a distance are	explain the horizontal	the independent variable and	Inertia
the quantitative conservation	explained by fields	acceleration of a projectile?	acceleration as the dependent	Inertial mass
of momentum in interactions	(gravitational, electric, and		variable.	Instantaneous
and the qualitative meaning	magnetic) permeating space	How do Newton's laws		Instantaneous acceleration
of this principle.]	that can transfer energy	explain the vertical	After: HS-PS2-1	Instantaneous velocity
[Assessment Boundary:	through space. Magnets or	acceleration of a projectile?	The final test for this standard	Interaction pair
Assessment is limited to	electric currents cause		should include concepts and	Internal force
systems of two macroscopic	magnetic fields; electric	Why is an object in uniform	calculations for velocity,	Inverse relationship
bodies moving in one	charges or changing	circular motion	acceleration, forces, and	Isolated system
dimension.]	magnetic fields cause	experiencing centripetal	Newton's laws. If possible, it is	Kepler's second law
	electric fields. (HS-PS2-	acceleration?	a good idea to add data analysis	Kinetic friction
HS-PS2-3 Apply scientific	4),(HS-PS2-5)		questions similar to questions	Law of conservation of
and engineering ideas to		Why does centrifugal force	found on the ACT or MME.	momentum
design, evaluate, and refine a	PS3.A: Definitions of	not actually exist?		Line of best fit
device that minimizes the	Energy		Before: HS-PS2-2	Linear relationship
force on a macroscopic	"Electrical energy" may	On what variables does the	Pretest over concepts related to	Magnitude
object during a	mean energy stored in a	value of g depend? What	momentum.	Measurement
collision.* [Clarification	battery or energy	factors do not affect it?		Momentum
Statement: Examples of	transmitted by electric		Discussions with the students.	Motion diagram
evaluation and refinement	•	How can a person's weight		Net force
could include determining	currents.(<i>secondary to HS-</i> <i>PS2-5</i>)	change depending on their	KWL	Newton's first law
the success of the device at	P32-3)	location?		Newton's law of universal
protecting an object from			During: HS-PS2-2	gravitation
damage and modifying the	ETS1.A: Defining and	How can you find net force	Quick assessments should be	Newton's second law
design to improve it.	Delimiting an Engineering	using vector resolution?	used after lectures, e.g.	Newton's third law
Examples of a device could	Problem		response cards, daily	Normal force
include a football helmet or a	Criteria and constraints also	How does the angle of	assignments, think/pair/share,	Origin
parachute.] [Assessment	include satisfying any	inclination change an	or quick writes.	Particle model
Boundary: Assessment is	requirements set by society,	object's normal force,		Physics
limited to qualitative	such as taking issues of risk	friction force, and net	Practice problems involving	Position
evaluations and/or algebraic	mitigation into account, and	force?	impulse and change in	Position
manipulations.]	they should be quantified to		momentum and the	Position-time graph
	the extent possible and	Explain using an example	conservation of momentum.	Precision
HS-PS2-4 Use mathematical	stated in such a way that one	how Newton's third law		Projectile
representations of Newton's	can tell if a given design	relates to conservation of	After: HS-PS2-2	Quadratic relationship

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Juminal usLaw of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces 	meets them. (secondary to HS-PS2-3) ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS- PS2-3)	momentum in collisions. How can a bullet have the same momentum as a truck? What conditions are necessary for an object to stay in orbit around the Earth? What is the relationship between work and energy?	The final test for this standard should include concepts on momentum and calculations for momentum, impulse, change in momentum, and conservation of momentum. If possible, it is a good idea to add data analysis questions similar to questions found on the ACT or MME. Before: HS-PS2-3 Have a class discussion to gage student interest level for different project ideas. You may want to offer multiple ideas for students to choose from if the recourses are available. During: HS-PS2-3 Students must complete a project that uses engineering practices to design or redesign an object that reduces the force experienced by the object during a collision. E.g. design an egg dropping apparatus, draw a diagram and explain the redesign of specific products such as football helmets or parachutes. After: HS-PS2-3 Have students write a report about their project and why they used certain design features or have students answer a list of follow-up	Resultant Scalar Scientific law Scientific method Scientific theory Significant digits Static friction System Tension Terminal velocity Time interval Trajectory Uniform circular motion Vector Vector resolution Velocity-time graph Weightlessness

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Standards			questions. Before : HS-PS2-4Pretest over concepts related to gravitational force and electrical force.Discussions with the students.KWL During : HS-PS2-4 Quick assessments should be 	
			gravity and electrostatic forces and calculations using Coulomb's Law and Newton's Law of Gravitation. If possible, it is a good idea to add data analysis questions similar to questions found on the ACT or MME. <u>Before</u> : HS-PS2-5 Discussions with the students.	

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
			KWL <u>During</u> : HS-PS2-5 Have students predict the outcome of demonstrations and analyze the results. E.g. Electric generator, electric motor. <u>After</u> : HS-PS2-5 Have students design their own investigation that shows the relationship between electric current and magnetic force. E.g. place a compass around a current carrying wire or test what variables will increase the magnetic force of an electromagnet.	

Mendon High School Science Curriculum Map <u>Physics</u>

Time Frame: January – March Unit 2: Energy

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Students who demonstrate	PS3.A: Definitions of	What is the relationship between	Before: HS-PS3-1	Amplitude
understanding can:	Energy	work, power and energy?	Pretest over energy	Amplitude
	Energy is a quantitative		transformation and	Antinode
HS-PS3-1 Create a	property of a system that	What are different ways in	conservation.	Antinode
computational model to	depends on the motion and	which mechanical energy can be		Crest
calculate the change in the	interactions of matter and	transferred and stored?		Efficiency
energy of one component in a	radiation within that system.		During: HS-PS3-1	Effort force
system when the change in	That there is a single	How can the conservation of	Complete a lab that will show	Elastic collision
energy of the other	quantity called energy is	energy be maximized.	the conservation of mechanical	Elastic potential
component(s) and energy flows	due to the fact that a		energy. E.g. inelastic collisions	energy
in and out of the system are	system's total energy is	What is the relationship between	lab or a rollercoaster lab	Energy
known. [Clarification	conserved, even as, within	momentum and kinetic energy?		Frequency
Statement: Emphasis is on	the system, energy is		After: HS-PS3-1	Frequency
explaining the meaning of	continually transferred from	When is momentum conserved	Have students create their own	Gravitational potential
mathematical expressions used	one object to another and	and not kinetic energy?	equations for energy	energy
in the model.] [Assessment	between its various possible		conservation based on the	Ideal mechanical
Boundary: Assessment is	forms. (HS-PS3-1),(HS-	How does wave speed relate to	results from the lab. Have	advantage
limited to basic algebraic	PS3-2)	wavelength and period?	students use their energy	Inelastic collision
expressions or computations; to			equation to calculate changes in	Interference
systems of two or three	At the macroscopic scale,	What is the relationship between	energy.	Interference
components; and to thermal	energy manifests itself in	the amplitude of a wave and the		Joule
energy, kinetic energy, and/or	multiple ways, such as in	rate of energy transfer?	Before: HS-PS3-2	Kinetic energy
the energies in gravitational,	motion, sound, light, and		Have students brainstorm a list	Kinetic energy
magnetic, or electric fields.]	thermal energy. (HS-PS3-2)	What is the relationship between	of different types of energy.	Law of conservation
	(HS-PS3-3)	the amplitude of a wave and the		of energy
HS-PS3-2 Develop and use		rate of energy transfer?	Make a rubric for the diagram,	Longitudinal wave
models to illustrate that energy	These relationships are		drawing, or animation that will	Longitudinal wave
at the macroscopic scale can be	better understood at the	What is the difference between	model the energy chosen by the	Machine
accounted for as a combination	microscopic scale, at which	constructive and destructive	students	Mechanical advantage
of energy associated with the	all of the different	interference?		Mechanical energy
motions of particles (objects)	manifestations of energy		During: HS-PS3-2	Node
and energy associated with the	can be modeled as a		Depending on your resources,	Node

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
relative positions of particles	combination of energy		have students complete a	Period
(objects). [Clarification	associated with the motion		project described in the	Period
Statement: Examples of	of particles and energy		standard to the left.	Periodic motion
phenomena at the macroscopic	associated with the			Periodic motion
scale could include the	configuration (relative		After: HS-PS3-2	Power
conversion of kinetic energy to	position of the particles). In		Have students share their	Reference level
thermal energy, the energy	some cases the relative		projects.	Refraction
stored due to position of an	position energy can be			Refraction
object above the earth, and the	thought of as stored in fields		Before: HS-PS3-3	Resistance force
energy stored between two	(which mediate interactions		Have students brainstorm	Rotational kinetic
electrically-charged plates.	between particles). This last		project ideas that will	energy
Examples of models could	concept includes radiation,		demonstrate transforming of	Thermal energy
include diagrams, drawings,	a phenomenon in which		energy (Many ideas are listed in	Transverse wave
descriptions, and computer	energy stored in fields		the standard).	Transverse wave
simulations.]	moves across space. (HS-			Trough
_	PS3-2)		Have students choose an	Trough
HS-PS3-3 Design, build, and			appropriate project.	Watt
refine a device that works	PS3.B: Conservation of			Wave
within given constraints to	Energy and Energy		During: HS-PS3-3	Wave
convert one form of energy into	Transfer		A big project like this should	Wavelength
another form of	Conservation of energy		have check points for the	Machine
energy.* [Clarification	means that the total change		students such as a materials list,	Work
Statement: Emphasis is on both	of energy in any system is		a blue print, updates during	Work-energy theorem
qualitative and quantitative	always equal to the total		construction, and the final	
evaluations of devices.	energy transferred into or		project.	
Examples of devices could	out of the system. (HS-PS3-			
include Rube Goldberg devices,	1)		After: HS-PS3-3	
wind turbines, solar cells, solar			Projects may be shared.	
ovens, and generators.	Energy cannot be created or			
Examples of constraints could	destroyed, but it can be		If data can be collected from	
include use of renewable	transported from one place		projects then students may use	
energy forms and efficiency.]	to another and transferred		them to test variables and	
[Assessment Boundary:	between systems. (HS-PS3-		produce graphs.	
Assessment for quantitative	1),(HS-PS3-4)			
evaluations is limited to total			Before: HS-PS3-4	
output for a given input.	Mathematical expressions,		Have students brainstorm ideas	
Assessment is limited to devices	which quantify how the		for conducting an experiment	
constructed with materials	stored energy in a system		similar to the one described in	

 constructed with materials
 stored energy in a system
 similar to t

 *Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

HS-PS3-4 Plan and conduct an nvestigation to provide	depends on its configuration		
		the standard.	
	(e.g. relative positions of		
nuactigation to provide	charged particles,	During: HS-PS3-4	
investigation to provide	compression of a spring)	The lab completed by students	
evidence that the transfer of	and how kinetic energy	will depend on available	
hermal energy when two	depends on mass and speed,	materials.	
components of different	allow the concept of		
emperature are	conservation of energy to be	Have advanced students design	
combined within a closed	used to predict and describe	their own data tables and	
system results in a more	system behavior. (HS-PS3-	graphs.	
uniform energy distribution	1)		
among the components in the		After: HS-PS3-4	
system (second law of	The availability of energy	Grade lab reports, share data	
hermodynamics). [Clarificatio	limits what can occur in any	and graphs.	
n Statement: Emphasis is on	system. (HS-PS3-1)		
analyzing data from student		Before: HS-PS3-5	
nvestigations and using	Uncontrolled systems	Brainstorm project ideas	
nathematical thinking to	always evolve toward more	(diagram, drawing, animation,	
lescribe the energy changes	stable states—that is,	etc.), that will represent one of	
both quantitatively and	toward more uniform	the different forms of energy	
conceptually. Examples of	energy distribution (e.g.,	interaction listed in the	
nvestigations could include	water flows downhill,	standard.	
nixing liquids at different	objects hotter than their		
nitial temperatures or adding	surrounding environment	During: HS-PS3-5	
objects at different	cool down). (HS-PS3-4)	Check points should be set for	
emperatures to water.]		the project.	
Assessment Boundary:	PS3.C: Relationship		
Assessment is limited to	Between Energy and	After: HS-PS3-5	
investigations based on	Forces	Share the projects with	
naterials and tools provided to	When two objects	presentations.	
students.]	interacting through a field		
	change relative position, the		
HS-PS3-5 Develop and use a	energy stored in the field is		
nodel of two objects	changed. (HS-PS3-5)		
nteracting through electric or			
nagnetic fields to illustrate the	PS3.D: Energy in		
forces between objects and the	Chemical Processes		
changes in energy of the	Although energy cannot be		

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
objects due to the	destroyed, it can be			
interaction. [Clarification	converted to less useful			
Statement: Examples of models	forms—for example, to			
could include drawings,	thermal energy in the			
diagrams, and texts, such as	surrounding environment.			
drawings of what happens	(HS-PS3-3),(HS-PS3-4)			
when two charges of opposite				
polarity are near each other.]	ETS1.A: Defining and			
[Assessment Boundary:	Delimiting an Engineering			
Assessment is limited to systems	Problem			
containing two objects.]	Criteria and constraints also			
	include satisfying any			
	requirements set by society,			
	such as taking issues of risk			
	mitigation into account, and			
	they should be quantified to			
	the extent possible and			
	stated in such a way that			
	one can tell if a given			
	design meets			
	them. (secondary to HS-			
	<i>PS3-3</i>)			

Mendon High School Science Curriculum Map <u>Physics</u>

Time Frame: March – June Unit 3: Waves and Electromagnetic Radiation

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Students who demonstrate	PS3.D: Energy in	What factors does the	Before: HS-PS4-1	Ammeter
understanding can:	Chemical Processes	amount of current produced	KWL waves	Ampere
	Solar cells are human-made	in a magnetic field depend		Antenna
HS-PS4-1 Use	devices that likewise	on?	Pretest	Atomic mass unit
mathematical	capture the sun's energy			Average power
representations to support a	and produce electrical	How does a cathode ray	During: HS-PS4-1	Battery
claim regarding	energy. (secondary to HS-	tube work?	Use equations to solve for the	Capacitance
relationships among the	PS4-5)		speed, period, frequency, and	Capacitor
frequency, wavelength, and		Describe the orientation of	wavelength for a variety of	Charging by conduction
speed of waves traveling in	PS4.A: Wave Properties	the electric field, magnetic	different waves traveling	Charging by induction
various media.	The wavelength and	field, and direction of travel	through various media.	Circuit breaker
[Clarification Statement:	frequency of a wave are	in an electromagnetic wave.		Conductor
Examples of data could	related to one another by		After: HS-PS4-1	Coulomb
include electromagnetic	the speed of travel of the	How does a capacitor	Posttest for wave calculations.	Coulomb's law
radiation traveling in a	wave, which depends on the	work?		Dielectrics
vacuum and glass, sound	type of wave and the		Before: HS-PS4-2	Electric circuit
waves traveling through air	medium through which it is	What are four factors that	Discuss advantages and	Electric current
and water, and seismic	passing. (HS-PS4-1)	affect the resistance	disadvantages of digital	Electric field
waves traveling through the		properties of a piece of	transmission of information.	Electric field lines
Earth.] [Assessment	Information can be digitized	metal wire?		Electric potential difference
Boundary: Assessment is	(e.g., a picture stored as the		During: HS-PS4-2	Electromagnetic induction
limited to algebraic	values of an array of	Why do wires heat up when	Research a current issue,	Electromagnetic radiation
relationships and describing	pixels); in this form, it can	a current flows in them?	positive or negative, with	Electromagnetic spectrum
those relationships	be stored reliably in		digital information.	Electromagnetic wave
qualitatively.]	computer memory and sent	What does an ammeter		Electromotive force
	over long distances as a	measure? What does a	After: HS-PS4-2	Electrostatics
HS-PS4-2 Evaluate	series of wave pulses. (HS-	voltmeter measure? How	Share research reports with the	Elementary charge
questions about the	PS4-2),(HS-PS4-5)	would you insert each in a	class.	Equipotential
advantages of using a		circuit?		Equivalent resistance
digital transmission and	[From the 3–5 grade band		Before: HS-PS4-3	Fuse
storage of information.	endpoints] Waves can add		KWL	Ground-fault interrupter
[Clarification Statement:	or cancel one another as			Grounding

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
Examples of advantages	they cross, depending on		Pretest	Insulators
could include that digital	their relative phase (i.e.,			Isotope
information is stable	relative position of peaks		During: HS-PS4-3	Kilowatt-hour
because it can be stored	and troughs of the waves),		Demonstrate or show many	Mass spectrometer
reliably in computer	but they emerge unaffected		properties of mechanical waves	Neutral
memory, transferred easily,	by each other. (Boundary:		that are shared by	Parallel circuit
and copied and shared	The discussion at this grade		electromagnetic waves	Parallel connection
rapidly. Disadvantages	level is qualitative only; it		(diffraction, interference,	Primary coil
could include issues of easy	can be based on the fact that		Doppler effect, etc.).	Receiver
deletion, security, and	two different sounds can			Resistance
theft.]	pass a location in different		Discuss characteristics of	Resistor
	directions without getting		electromagnetic waves that are	Series circuit
HS-PS4-3 Evaluate the	mixed up.) (HS-PS4-3)		similar to particles.	Series connection
claims, evidence, and			·	Short circuit
reasoning behind the idea	PS4.B: Electromagnetic		Discuss how the idea of	Step-down transformer
that electromagnetic	Radiation		photons brings the two theories	Step-up transformer
radiation can be described	Electromagnetic radiation		together.	Superconductor
either by a wave model or a	(e.g., radio, microwaves,		C .	Volt
particle model, and that for	light) can be modeled as a		After: HS-PS4-3	Voltmeter
some situations one model	wave of changing electric		Posttest	
is more useful than the	and magnetic fields or as			
other. [Clarification	particles called photons.		Before: HS-PS4-4	
Statement: Emphasis is on	The wave model is useful		Brainstorm ideas for research	
how the experimental	for explaining many		projects related to the standard.	
evidence supports the claim	features of electromagnetic			
and how a theory is	radiation, and the particle		Create a rubric for how students	
generally modified in light	model explains other		should evaluate the published	
of new evidence. Examples	features. (HS-PS4-3)		material.	
of a phenomenon could	, , , , ,			
include resonance,	When light or longer		Evaluate the validity of an	
interference, diffraction,	wavelength electromagnetic		article with the class as an	
and photoelectric effect.]	radiation is absorbed in		example.	
[Assessment Boundary:	matter, it is generally		*	
Assessment does not	converted into thermal		During: HS-PS4-4	
include using quantum	energy (heat). Shorter		Have check points for the	
theory.]	wavelength electromagnetic		students' research paper.	
	radiation (ultraviolet, X-			
HS-PS4-4 Evaluate the	rays, gamma rays) can		After: HS-PS4-4	

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
validity and reliability of	ionize atoms and cause		Share research papers with the	
claims in published	damage to living cells. (HS-		class and have discussions.	
materials of the effects that	PS4-4)			
different frequencies of			Before: HS-PS4-5	
electromagnetic radiation	Photoelectric materials emit		Brainstorm research ideas	
have when absorbed by	electrons when they absorb			
matter. [Clarification	light of a high-enough		During: HS-PS4-5	
Statement: Emphasis is on	frequency. (HS-PS4-5)		Students should complete	
the idea that photons			research and a report on	
associated with different	PS4.C: Information		different uses for	
frequencies of light have	Technologies and		electromagnetic waves.	
different energies, and the	Instrumentation			
damage to living tissue	Multiple technologies based		After: HS-PS4-5	
from electromagnetic	on the understanding of		Students should share their	
radiation depends on the	waves and their interactions		research with the class. The	
energy of the radiation.	with matter are part of		class should take notes or	
Examples of published	everyday experiences in the		complete worksheets on the	
materials could include	modern world (e.g., medical		different uses of	
trade books, magazines,	imaging, communications,		electromagnetic waves.	
web resources, videos, and	scanners) and in scientific			
other passages that may	research. They are essential			
reflect bias.] [Assessment	tools for producing,			
Boundary: Assessment is	transmitting, and capturing			
limited to qualitative	signals and for storing and			
descriptions.]	interpreting the information			
	contained in them. (HS-			
HS-PS4-5 Communicate	PS4-5)			
technical information about				
how some technological				
devices use the principles				
of wave behavior and wave				
interactions with matter to				
transmit and capture				
information and energy.*				
[Clarification Statement:				
Examples could include				
solar cells capturing light				
and converting it to				

 and converting it to
 *Denotes a traditional science content integrated with engineering through a Practice or Disciplinary Core Idea.

Next Generation Science Standards	Disciplinary Core Ideas	Essential Questions	Assessments	Vocabulary
electricity; medical imaging; and communications technology.] [Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band				
theory.]				